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CHAPTER 1

Introduction

Au coeur de mon travail de thèse se trouve la classification des variétés algébriques
projectives homogènes rationnelles sur un corps de base k algébriquement clos. L’un des
objectifs est notamment d’obtenir une description qui soit la moins dépendante possible
de la caractéristique de k. Ce manuscrit reprend le contenu des articles [Mac1] et [Mac2],
pour en fournir une exposition plus unifiée.

Ces variétés homogènes représentent – à côté, par exemple, des variétés toriques – l’une des
rares classes d’objets de la géométrie algébrique sur lesquelles on peut effectuer des calculs
explicites à l’aide d’un dictionnaire combinatoire assez puissant, explicite et bien étudié
(dont une référence exhaustive est [Jan], qui se concentre surtout sur le point de vue des
représentations). Ce dictionnaire permet par exemple de tester la validité d’une conjecture,
ou de donner des contre-exemples explicites pour un certain phénomène. Pour en citer
quelques-uns, concernant le théorème d’annulation de Kodaira pour les fibrés en droites
amples, nous mentionnons [Lau1, Theorem 5.2], [Kol, V.1.4.3], [LR] et [Tot, Theorem
2.1, Theorem 3.1].

Pour commencer, il est important de souligner qu’une classification complète et uniforme
de ces variétés est connue depuis longtemps en caractéristique zéro, et avait déjà été ob-
tenue en 1993 par Wenzel dans [Wen], et reprise par Haboush et Lauritzen dans [HL],
en caractéristique au moins égale à 5. Les cas des petites caractéristiques – deux et trois
– restaient ouverts. Nous verrons en effet qu’ils permettent l’existence d’objets que l’on
pourrait qualifier d’exotiques.

Naturellement, la plupart des notions et des résultats qui nous intéressent proviennent
du cadre de la géométrie algébrique classique sur un corps algébriquement clos k. Néan-
moins, il est utile de travailler avec des schémas de type fini sur k et dans ce contexte,
le mot groupe algébrique désigne tout schéma en groupes de type fini sur k. Ce point de
vue a son importance lorsqu’on utilise des termes tels que noyau d’un homomorphisme de
groupes, ou intersection de sous-schémas : ces notions doivent toutes être comprises au
sens schématique. En ce qui concerne les groupes algébriques, nos références principales
sont [Bor] et [Spr] pour la théorie classique sur un corps algébriquement clos. Comme
référence plus récente adoptant le point de vue des schémas en groupes, nous suivons [Mil].

Tout d’abord, il est impératif de définir ce qu’on entend par variété projective homogène
rationnelle. Nous supposons que tous les objets et tous les morphismes – sauf mention ex-
presse du contraire – sont définis sur le corps de base. Nous appelons variété un schéma de
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8 1. INTRODUCTION

type fini, séparé et intègre sur k et variété projective une variété admettant une immersion
fermée dans un certain espace projectif de dimension N , noté PN . La condition d’homo-
généité d’une variété X est définie par l’existence d’une action transitive d’un groupe
algébrique lisse et connexe sur X. La condition de rationalité, c’est-à-dire de l’existence
d’un ouvert dense isomorphe à un ouvert de l’espace affine, ou encore d’une application
birationnelle vers l’espace projectif, est purement géométrique, et se traduit par le fait
que le groupe ci-dessus est affine ; en d’autres termes, il est isomorphe à un sous-groupe
fermé d’un certain GLn.

Nous commençons dès lors par simplifier notre problème de classification, en nous re-
streignant aux groupes algébriques semi-simples ; cela permet d’accéder au dictionnaire
combinatoire fourni par les systèmes de racines. Pour cela, quelques définitions prélimi-
naires supplémentaires sont nécessaires.

1.1. Histoire du problème

1.1.1. Racines et paraboliques réduits. Un tore est un groupe algébrique T iso-
morphe à une puissance Gr

m du groupe multiplicatif. Un sous-groupe de Borel d’un groupe
algébrique affine lisse G est un sous-groupe lisse, connexe, résoluble et maximal pour ces
propriétés. Un sous-groupe parabolique est un sous-groupe P de G tel que le quotient G/P
soit projectif. Le radical R(G) d’un groupe algébrique G est le plus grand sous-groupe
lisse connexe résoluble distingué dans G. Un groupe semi-simple est un groupe algébrique
affine lisse connexe dont le radical est réduit à l’élément neutre. De façon analogue, le
radical unipotent Ru(G) est le plus grand sous-groupe lisse connexe unipotent distingué
dans G. Un groupe est dit réductif s’il est affine, lisse, connexe et de radical unipotent
trivial.

Un résultat de structure fondamental (voir [Sal, Théorème 5.2]) affirme que toute va-
riété X projective homogène rationnelle peut s’écrire sous la forme

X = G/P,

où G est un groupe semi-simple et simplement connexe et P un sous-groupe parabolique
de G. En effet, le résultat de de Salas permet d’abord d’écarter les variétés abeliennes,
ensuite de supposer G semi-simple adjoint et donc, comme tout parabolique contient le
centre, de supposer G semi-simple et simplement connexe.

De plus, les couples (B, T ) - où B est un sous-groupe de Borel de G et T un tore maximal
contenu dans B - sont tous G(k)-conjugués dans G. Enfin, les sous-groupes paraboliques
de G sont précisément ceux qui contiennent un sous-groupe de Borel. La dimension du
tore maximal T est appelé le rang du groupe G.

Cela signifie qu’on peut fixer un sous-groupe de Borel et se ramener, à conjugaison près, à
l’étude des sous-groupes de G qui le contiennent. Nous fixons donc un groupe semi-simple
et simplement connexe

G ⊃ B ⊃ T
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muni d’un sous-groupe de Borel et d’un tore maximal.

À présent, nous définissons les objets combinatoires qui vont nous permettre de décrire
les sous-groupes paraboliques. Nous considérons l’action de T sur le groupe G donnée par
la conjugaison. Elle induit une action du tore T sur l’espace tangent à G en son élément
neutre. Ce dernier a une structure d’algèbre de Lie : c’est un espace vectoriel sur k, muni
d’une opération de crochet, qui est bilinéaire, antisymétrique et qui vérifie l’identité de
Jacobi. On l’appelle algèbre de Lie de G et on le note

LieG.

Or, toute représentation de T (c’est-à-dire, toute action de T sur un espace vectoriel de
dimension finie) est diagonalisable ; autrement dit, elle admet une décomposition unique
en somme directe d’espaces propres. Nous pouvons donc écrire

LieG = LieT ⊕

(⊕
γ∈Φ

gγ

)
,

où le sous-espace des points fixes de l’action coïncide avec LieT . L’ensemble fini des
valeurs propres

Φ = Φ(G, T )

est donné par les poids non triviaux du tore

γ : T ! Gm

tels que l’espace de poids correspondant

gγ ··= {X ∈ LieG : t ·X = γ(t)X, pour tout t ∈ T}

soit non nul. Ces poids sont appelés les racines de G par rapport au tore maximal T .
Fait important, les espaces radiciels gγ sont de dimension 1 et correspondent à des copies
du groupe additif (noté Ga) dans G ; plus précisément, il existe des isomorphismes T -
équivariants

uγ : Ga
∼

−! Uγ ⊂ G,

de sorte que l’action de T est donnée par

t · uγ(x) = tuγ(x)t
−1 = uγ(γ(t)x) pour tout t ∈ T,

où Gm agit sur Ga par multiplication. Nous notons Φ+ le sous-ensemble des racines po-
sitives associées au sous-groupe de Borel fixé B ; par définition, une racine γ est positive
si et seulement si le sous-groupe Uγ qui lui correspond est contenu dans B. De plus, une
fois le sous-groupe de Borel choisi, il existe une unique base de racines dites simples, à
savoir un sous-ensemble ∆ ⊂ Φ+ tel que toute racine positive s’écrit de façon unique
comme combinaison linéaire à coefficients entiers positifs d’éléments de ∆. Le groupe G
est engendré par le tore maximal, ainsi que par les sous-groupes radiciels associés aux
racines simples et à leurs opposées.

Pour rendre plus compréhensible le formalisme que nous venons d’introduire, nous l’illus-
trons sur un exemple fondamental : le groupe G = SLn, avec pour sous-groupe de Borel
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B celui donné par les matrices triangulaires supérieures de déterminant 1, et pour tore
maximal T le tore des matrices diagonales

T ∋ t = diag(t1, . . . , tn), t1 · · · tn = 1

L’algèbre de Lie de G se décompose donc de la manière suivante :

LieG = LieT ⊕

(⊕
i ̸=j

kEij

)
,

où la matrice Eij a un unique coefficient non nul, qui vaut 1 à la position (i, j). Notant εi
le caractère envoyant t sur ti, on voit que T agit sur la droite kEij avec le poids εi − εj,
donc

Φ = {εi − εj, i ̸= j} ⊃ Φ+ = {εi − εj, i < j} ⊃ ∆ = {εi − εi+1, 1 ≤ i ≤ n− 1}.

Nous sommes maintenant en mesure d’énoncer la classification des sous-groupes para-
boliques réduits (c’est-à-dire, ceux dont le schéma sous-jacent est réduit). En réalité, de
par leur structure additionnelle de groupes, les groupes algébriques sur k sont réduits si
et seulement s’ils sont lisses. Pour α ∈ ∆, nous notons

Pα

le sous-groupe parabolique et maximal parmi les paraboliques réduits contenant B et ne
contenant pas U−α. Il est engendré par B et par les U−β, avec β décrivant toutes les racines
simples sauf α.

Avec les notations introduites ci-dessus, le sous-groupe (réduit, maximal) associé à la
racine simple εm − εm+1 est le sous-groupe Pm suivant :

T =




∗

∗
. . .

∗
∗




⊂ B =




∗ · · · ∗

∗
. . .

...

∗
∗




⊂ Pm ··=




∗ ∗ · · · ∗
∗ ∗ · · · ∗

∗ · · · ∗
...

. . .
...

∗ · · · ∗




,

où les matrices dans Pm sont triangulaires par blocs, avec blocs diagonaux de taille res-
pective m et (n−m).

Pour tout groupe semi-simple G, en toute caractéristique, il existe une bijection entre les
sous-groupes paraboliques réduits de G contenant B et les sous-ensembles de l’ensemble
des racines simples ∆. Cette bijection est donnée explicitement par

{sous-ensembles de ∆} −! {G ⊃ P ⊃ B}, I 7−! PI ··=
⋂

α∈∆\I

Pα.(1.1.1)

Autrement dit, un sous-groupe parabolique réduit P est déterminé par la base du système
de racines d’un sous-groupe de Levi. Ce que nous entendons par sous-groupe de Levi est
un sous-groupe lisse, connexe et réductif de G (unique à conjugaison près) tel que P soit le
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produit semi-direct de ce sous-groupe et du radical unipotent Ru(P ). Il existe un unique
sous-groupe de Levi contenant T ; il est engendré par T et par les sous-groupes

Uα et U−α,

contenus dans P . Cela nous permet de définir aussi le sous-groupe parabolique opposé de
P , noté P− : il est engendré par le Borel opposé (c’est-à-dire, celui associé à l’ensemble
de racines Φ\Φ+) et par le sous-groupe de Levi de P .

En particulier, lorsqu’on travaille sur un corps de caractéristique nulle, tout groupe al-
gébrique étant lisse, la bijection ci-dessus nous permet de classifier tous les sous-groupes
paraboliques.

1.1.2. En caractéristique positive. Sur un corps de caractéristique p > 0, les
sous-groupes paraboliques peuvent ne pas être réduits. Tout groupe algébrique H a un
plus grand sous-groupe réduit, noté Hred. De plus, avant de s’aventurer dans le monde de
la caractéristique positive, il est essentiel de rappeler que, comme il existe des groupes non
lisses, un groupe algébrique n’est pas déterminé par son espace topologique sous-jacent.
Si un groupe a comme espace sous-jacent un point, il est dit infinitésimal.

Une famille fondamentale de groupes algébriques infinitésimaux, qui jouent un rôle im-
portant dans cette thèse, est donnée par les noyaux de Frobenius. Nous notons F le
morphisme de Frobenius du corps k ; pour A une k-algèbre, nous notons A(1) le produit
tensoriel A⊗k,F k. Autrement dit, la structure d’algèbre de A(1) est donnée par

t · a = tpa, pour tout t ∈ k, a ∈ A(1).

L’homomorphisme de Frobenius de A est le morphisme de k-algèbres

FA : A
(1) −! A, a⊗ t 7−! tap,

défini par la propriété universelle du produit tensoriel. Ensuite, nous considérons le schéma
affine X = SpecA et nous notons X(1) le spectre de A(1). Le morphisme de k-schémas
associé à FA est appelé le morphisme de Frobenius de X. Nous le notons

FX : X −! X(1).

En répétant une telle construction, nous définissons pour tout entier naturel m le m-ième
morphisme de Frobenius iteré, que nous notons

Fm
X : X −! X(m).

Pour un groupe algébrique affine G, le schéma G(1) est aussi un groupe algébrique ; de plus,
le morphisme Fm

G est un morphisme de groupes algébriques pour tout m. Nous notons

mG

son noyau. Par définition, il s’agit d’un sous-groupe infinitésimal de G.

En raison de la lissité des groupes algébriques, en caractéristique nulle, nous pouvons
récupérer beaucoup d’informations sur un sous-groupe à partir de son algèbre de Lie ; à
savoir, si H est un sous-groupe de G, tous deux sont connexes et ont la même algèbre
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de Lie, alors ils doivent coïncider. En caractéristique positive, cela n’est clairement pas
suffisant, car l’algèbre de Lie d’un groupe algébrique coïncide avec celle de son noyau
de Frobenius. Pour faire face à ce problème, nous devons introduire plus de structure.
Une p-algèbre de Lie, ou algèbre de Lie restreinte, est une algèbre de Lie munie d’une
p-application. Cette dernière généralise à la fois la notion de Frobenius (d’une k-algèbre
associative) et la notion de puissance p-ième des dérivations à valeurs dans k.

Un résultat crucial, nous aidant à voir clairement combien d’informations nous pouvons
récupérer à partir de l’algèbre de Lie, est le suivant. Pour tout groupe algébrique G, il y
a une équivalence de catégories entre les sous-groupes de G tués par le Frobenius et les
p-sous-algèbres de Lie de LieG. Cette équivalence est fréquemment utilisée tout au long
de cette thèse.

En revenant aux paraboliques, nous commençons par présenter un premier exemple, donné
par une famille de variétés relativement simples, définies comme des versions tordues de
la variété d’incidence dans le plan projectif. Plus précisément, nous considérons

SL3 ⟳ Xm ··= {xp
m

0 y0 + xp
m

1 y1 + xp
m

2 y2 = 0} ⊂ P2 ×P2,(1.1.2)

où m est un entier positif. De plus, nous nous intéressons à l’action de G = SL3 sur
P2 ×P2, agissant comme suit :

A · (x, y) = (Ax, tB−1y), où bij ··= apij.

De cette manière, la variété Xm est préservée par l’action, et on vérifie que c’est une
variété SL3-homogène. Si on prend comme point de base celui de cordonnées

([1 : 0 : 0], [0 : 0 : 1]) ∈ Xm,

un calcul explicite de son stabilisateur P(m) donne

P(m) =


a b c

0 e f

0 h i

 ∈ SL3 : h
pm = 0

 ⊂ SL3 .(1.1.3)

Remarquons que pour m = 0, le sous-groupe parabolique P(0) coïncide avec le sous-groupe
de Borel B donné par les matrices triangulaires supérieures de déterminant 1. En revanche,
pour tout m ≥ 1, le sous-groupe P(m) est un parabolique non réduit.

Nous pouvons maintenant fournir un résumé des principaux résultats de structure pour
les sous-groupes paraboliques, en caractéristique positive (y compris 2 et 3).

Soit P un sous-groupe parabolique d’un groupe semi-simple, simplement connexe G, de
partie réduite Pred. Suivant [Wen], nous notons

U−
P
··= P ∩Ru(P

−
red)
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son intersection avec le radical unipotent du parabolique opposé de Pred. Le sous-groupe
U−
P est unipotent et infinitésimal par construction. De plus, il satisfait

U−
P =

∏
γ∈Φ+\ΦI

(U−
P ∩ U−γ) et P = U−

P × Pred,

où les deux égalités sont des isomorphismes de schémas donnés par la multiplication de G.
Cela implique que P peut s’obtenir à partir de sa partie réduite Pred, et de ses intersections
avec tous les sous-groupes radiciels contenus dans le radical unipotent opposé Ru(P

−
red).

Reformulons cet énoncé de manière plus combinatoire, en introduisant une fonction nu-
mérique. Nous désignons par αpn le sous-groupe du groupe additif donné par

αpn ··= {x ∈ Ga, x
pn = 0},

tandis que αp∞ désigne Ga.

Définition 1.1.1. Soit P un sous-groupe parabolique d’un groupe semi-simple G. La
fonction associée

φ : Φ −! N ∪ {∞}
est donnée par

P ∩ U−γ = u−γ(αpφ(γ)), γ ∈ Φ+.

En d’autres termes, toute racine positive γ (ne faisant pas partie du système de ra-
cines du sous-groupe de Levi) est envoyée sur l’entier naturel correspondant à la hauteur
de P ∩ U−γ, où la hauteur d’un sous-groupe est le plus petit entier positif m tel que le
morphisme de Frobenius itéré m fois l’annule. De leur côté, toutes les autres racines sont
envoyées sur l’infini.

Le résultat de structure fondamental - [Wen, Théorème 10] - est le suivant : le sous-groupe
parabolique P est uniquement déterminé par la fonction φ, sans aucune hypothèse sur la
caractéristique ou sur le groupe.

1.1.3. Caractéristique au moins 5. Sous l’hypothèse additionnelle que p ≥ 5,
Wenzel [Wen], Haboush et Lauritzen [HL] montrent que tous les sous-groupes para-
boliques de G peuvent être obtenus à partir de paraboliques réduits maximaux, en les
épaississant avec les noyaux de Frobenius puis en prenant leurs intersections. Leur résul-
tat est vrai aussi sous l’hypothèse que G est simplement lacé, c’est-à-dire qu’il ne contient
aucun facteur simple isomorphe à Spin2n+1 - le revêtement universel du groupe spécial
orthogonal SO2n+1 - ni isomorphe au groupe symplectique Sp2n, ni isomorphe à un groupe
exceptionnel de type F4 ou de type G2.

Plus précisément, sous les hypothèses que nous venons de mentionner, tout sous-groupe
parabolique de G est de la forme

m1GP
β1 ∩ . . . ∩ mrGP

βr ,(1.1.4)

où β1, . . . , βr sont des racines simples de G et m1, . . . ,mr des entiers positifs. Dans la
suite, un parabolique de cette forme sera appelé parabolique de type standard.
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Par exemple, le sous-groupe parabolique P(m) introduit dans (1.1.3) est de type stan-
dard, car il s’exprime comme

P(m) = P ε1−ε2 ∩ 1GP
ε2−ε3 .

En termes de fonctions numériques, la fonction associée au sous-groupe parabolique

mGP
α

envoie toutes les racines positives à l’infini, sauf celles contenant α dans leur support, qui
prennent la valeur m.

La démonstration de [Wen] repose fortement sur les constantes de structure relatives
à une base de Chevalley de l’algèbre de Lie d’un groupe semi-simple simplement connexe.
Une base de Chevalley de LieG est donnée par

{Xγ : γ ∈ Φ, Hα : α ∈ ∆},

où les Hα forment une base de LieT (l’algèbre de Lie du tore maximal). De plus, cette
base satisfait

gγ = LieUγ = kXγ et Xγ =
d

du

∣∣∣∣
u=1

.

Considérons maintenant deux racines γ et δ telles que le poids γ+δ soit encore une racine.
Soit r l’entier positif tel que γ − rδ soit une racine, mais γ − (r + 1)δ ne le soit pas. La
relation fondamentale qui nous intéresse est la suivante :

[Xγ, Xδ] = ±(r + 1)Xγ+δ.

L’entier r + 1 - défini à un signe près - est appelé la constante de structure associée au
couple (γ, δ). Par construction, de telles constantes sont indépendantes de la caractéris-
tique et sont des entiers dont la valeur absolue est strictement inférieure à 5.

Les hypothèses faites sur la caractéristique (p ≥ 5) ou sur le groupe (simplement lacé)
garantissent toutes deux que ces constantes ne s’annulent pas sur k.

Depuis les travaux que nous venons de mentionner, la question suivante est restée ouverte
pendant presque trois décennies : que se passe-t-il dans le cas d’un corps de caractéristique
2 ou 3, sous l’hypothèse que le groupe G ait au moins un facteur non simplement lacé ?
Dans [Wen], on trouve seulement une allusion à des paraboliques qui ne sont pas de type
standard ; les deux premiers exemples explicites (obtenus avec des méthodes de théories
de représentations) se trouvent dans [Lau2, Section 3.3]. Depuis, la littérature semble
avoir ignoré le problème.

1.2. Isogénies sans facteur central

Nous pouvons restreindre notre attention à un groupeG simple et simplement connexe,
ce que nous faisons dans cette section. Cette digression est indépendante et motivée par
l’idée qu’une certaine classe d’isogénies va nous permettre de généraliser le rôle joué par
le morphisme de Frobenius dans [Wen]. Une isogénie est un homomorphisme de groupes
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algébriques qui est fini et fidèlement plat. On parle d’isogénie centrale quand le noyau est
un sous-groupe central.

1.2.1. Isogénie très spéciale. Supposons que le diagramme de Dynkin de G ait
une arête de multiplicité p, c’est-à-dire que G soit de type Bn, Cn ou F4 en caractéristique
deux, ou de type G2 en caractéristique trois. Plus précisément, pour un groupe G de rang
n, on note

α1, . . . , αn

la base ∆ des racines simples, et les différents cas sont les suivants. En type Bn (c’est-à-dire
quand on travaille avec le revêtement universel d’un groupe spécial orthogonal agissant
sur un espace vectoriel de dimension impaire) on note αn la racine simple courte. De façon
duale, en type Cn (c’est-à-dire dans le cas d’un groupe symplectique) on note αn la racine
simple longue. Quand on travaille avec le groupe exceptionnel de type F4, la convention
que nous adoptons pour son diagramme de Dynkin est la suivante :

α1 α2 α3 α4

.

Finalement, pour le groupe exceptionnel de typeG2 le diagramme de Dynkin est representé
comme suit :

α1 α2

.

Sous ces hypothèses, un ingrédient important est l’isogénie très spéciale d’un groupe simple
et simplement connexe G qui est le quotient

πG : G −! G

par le sous-groupe NG de G, non central, de Frobenius trivial et minimal pour ces proprié-
tés. Un tel sous-groupe est uniquement déterminé par son algèbre de Lie qui est définie
en termes de racines simples courtes. Il se trouve que lorsque le diagramme de Dynkin
de G a une arête de multiplicité égale à la caractéristique, un tel sous-groupe est stricte-
ment contenu dans le noyau de Frobenius. En particulier, πG agit comme un morphisme
de Frobenius sur les copies du groupe additif associées aux racines courtes, et c’est un
isomorphisme sur les copies du groupe additif associées aux racines longues.

Le groupe quotient G est simple, simplement connexe et possède un système de racines
dual de celui de G ; de plus, la composition

πG ◦ πG

est égale au morphisme de Frobenius de G (voir les travaux originaux de Borel et Tits
[BT] sur le sujet, ainsi que le livre [CGP, Chapitre 7] pour plus de détails). Pour rendre
cet objet plus concret, on mentionne ici un exemple naturel provenant de l’algèbre linéaire,
qui peut être réinterprété comme une isogénie très spéciale, et qui est déjà décrit dans
[Ste, 4.11].

On suppose que la caractéristique est égale à deux et on considère les groupes G = SO2n+1
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et G′ = Sp2n, relatifs respectivement aux formes quadratiques et symplectiques

x20 +
n∑
i=1

xixn+i et
n∑
i=1

(
yiy

′
n+i − yn+iy

′
i

)
.

La caractéristique étant égale à deux, le groupe G fixe le premier vecteur e0 de la base
canonique de k2n+1, agissant ainsi sur le quotient

k2n+1/ke0 = k2n.

Cela induit une isogénie
ψ : G −! G′,

dont le noyau est unipotent et infinitésimal. Le relèvement de ψ au revêtement universel
de G donne une construction de l’isogénie très spéciale dans cet exemple.

1.2.2. Factorisation des isogénies. Le premier pas vers la généralisation de la
classification aux petites caractéristiques est une propriété de factorisation, que l’on peut
formuler comme suit.

Proposition 1.2.1. (Proposition 2.5.12)
Soit G un groupe algébrique simple et simplement connexe sur un corps algébriquement

clos k de caractéristique p > 0. Soit f : G! G′ une isogénie.
Alors il existe une factorisation unique de f comme

f : G G (G)(m) G′,π
Fm
G ρ

où m est un entier naturel, ρ est une isogénie centrale et π est soit l’identité, soit - lorsque
le diagramme de Dynkin de G a une arête de multiplicité p - l’isogénie très spéciale πG.

Cet énoncé nous permet de parler d’isogénies sans facteur central. Ces dernières sont
de la forme

Fm ou Fm ◦ π

où m est un entier positif. Les noyaux de cette classe d’isogénies sont les sous-groupes
infinitésimaux de G qui revêtent une importance cruciale pour la classification des sous-
groupes paraboliques. L’exclusion des isogénies centrales s’avère essentielle, car tout sous-
groupe central de G est contenu dans le tore maximal et, par conséquent, dans tout
sous-groupe parabolique. Il est fondamental de remarquer qu’il existe un ordre total sur
ces noyaux par inclusion :

1 ⊊ N ⊊ 1G ⊊ ker(F ◦ πG) ⊊ . . . ⊊ mG ⊊ ker(Fm ◦ πG) ⊊ m+1G ⊊ . . .(1.2.1)

Définition 1.2.2. On dit qu’un sous-groupe parabolique P est de type quasi-standard si
on peut l’obtenir à partir de paraboliques réduits en les épaississant avec des sous-groupes
distingués infinitésimaux et en les intersectant, c’est-à-dire si P est de la forme⋂

α

(ker ξα)P
α,

où chaque ξα est une isogénie sans facteur central.
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Cette définition est la généralisation souhaitée de la définition de parabolique de type
standard. Cela nous permet de réinterpréter les premiers exemples appelés exceptionnels
dans [Lau2] d’une façon assez claire et concise. On se place en caractéristique p = 2.
Le premier exemple donné dans cet article est le suivant : dans un groupe G simple,
simplement connexe, de type B2, il considère le parabolique

NGP
α1 ,

où α1 est la racine simple courte. Le deuxième exemple est comme suit : dans un groupe
G simple, simplement connexe, de type C4, avec racine simple longue α4, il considère le
sous-groupe parabolique

NGP
α4 .

Il s’agit de deux sous-groupes paraboliques de type quasi-standard, mais qui ne sont pas
de type standard.

1.3. Sous-groupes paraboliques avec partie réduite maximale

Nous parvenons à terminer la classification de la classe la plus simple à définir - du
point de vue combinatoire - de sous-groupes paraboliques, c’est-à-dire ceux ayant une
partie réduite maximale égale à Pα, où α est une racine simple de G par rapport au
sous-groupe de Borel B. Dans cette partie, on peut encore une fois se ramener au cas d’un
groupe G simple.

1.3.1. Cas quasi-standard. Notre résultat principal est valable pour tout type de
groupe G et en toute caractéristique p > 0, sauf dans le cas où p = 2 et le groupe G
est de type G2. Pour ce dernier cas, deux nouvelles familles exotiques de sous-groupes
paraboliques entrent en jeu.

Théorème A (Théorème 3.3.2). Soit P un sous-groupe parabolique non réduit. Si
Pred est maximal, il existe une unique isogénie ξ : G! G′ sans facteur central tel que

P = (ker ξ)Pred,

sauf si G est de type G2, p = 2 et si Pred = Pα1, où α1 est la racine simple courte.

Afin de compléter cet énoncé et d’obtenir une classification uniforme, nous reviendrons
rapidement sur le cas d’un groupe de type G2 (Théorème B).

La preuve de ce résultat commence par les cas quasi-standard, pour lesquelles la stra-
tégie de preuve est uniforme. Comme le comportement exotique en type G2 le confirme,
il n’y a pas moyen d’avoir une preuve qui utilise des arguments géométriques généraux :
nous procédons donc par une analyse au cas par cas. La preuve s’articule essentiellement
en trois étapes. La première consiste en quelques réductions élémentaires impliquant qu’il
suffit de montrer l’assertion suivante : si la partie réduite de P est maximale et si G agit
fidèlement sur G/P , alors P doit lui-même être réduit. La deuxième étape exploite la
description explicite du quotient

LieG/LiePred,
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vu comme représentation d’un sous-groupe de Levi de Pred. Enfin, la dernière étape
consiste à considérer certaines constantes de structure (choisies de manière à ce qu’elles
ne s’annulent pas en fonction de la caractéristique du corps de base k) et à conclure en
utilisant la notion d’isogénie très spéciale.

1.3.2. Type G2. Nous nous concentrons ensuite sur le cas d’un corps de caractéris-
tique 2 et d’un groupe de type G2. Nous notons α1 sa racine simple courte et α2 la racine
simple longue, de sorte que le système de racines soit le suivant.

5π/6
α1−α1

α2

−α2−3α1 − α2 −2α1 − α2 −α1 − α2

−3α1 − 2α2 .

Étonnamment peut-être, la stratégie de preuve analogue à celle évoquée dans le pa-
ragraphe précédent fonctionne lorsque la partie réduite est Pα2 , mais échoue lorsqu’on
considère l’hypothèse

Pred = Pα1 ,

en raison de l’annulation de certaines constantes de structure. Pour expliquer ce problème,
on démontre que LiePα2 est une sous-algèbre de Lie maximale, mais qu’il existe exac-
tement deux sous-algèbres de Lie maximales h et l de LieG contenant strictement LiePα1 .

Nous les décrivons explicitement et nous considérons les sous-groupes correspondants
de hauteur 1 dans G qui donnent naissance à deux nouveaux sous-groupes paraboliques
notés Ph et Pl. Ces derniers sont assez différents des autres car l’algèbre de Lie de G est
simple (en tant que p-algèbre de Lie). On ne peut pas les décrire comme épaississements
de Pα1 par le noyau d’une isogénie. Ensuite, nous étudions les deux espaces homogènes
correspondants, grâce à la description de G2 en tant que groupe d’automorphismes d’une
algèbre d’octonions ; voir [SV]. Il s’avère que G/Ph est isomorphe à l’espace projectif P5,
tandis que nous réalisons G/Pl comme une section hyperplane

G2 ⟳ X ↪−! Y ⟲ Sp6,

de la variété Sp6-homogène Y , qui paramètre les sous-espaces isotropes de dimension 3

dans un espace vectoriel symplectique de dimension 6. La construction de X est obtenue
explicitement ; cela permet d’interpréter la variété X dans un cadre de théorie des repré-
sentations.
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Plus précisément, nous obtenons la classification de tous les sous-groupes paraboliques
ayant partie réduite maximale avec l’énoncé suivant.

Théorème B (Proposition 3.2.26). Soit G de type G2 en caractéristique deux.
Alors tout sous-groupe parabolique non réduit de G ayant Pα1 comme partie réduite est
soit de type standard, soit obtenu à partir de Pl ou de Ph par tiré en arrière avec un
homomorphisme de Frobenius itéré.

1.3.3. Interprétation géométrique. Il est naturel à ce stade de revenir à notre
motivation initiale et de chercher à interpréter cette description d’un point de vue géo-
métrique. Il s’avère que les sous-groupes paraboliques dont la partie réduite est maximale
correspondent aux variétés homogènes dont le groupe de Picard est isomorphe à Z. Nous
reviendrons dans la suite sur une description plus détaillée ; pour l’instant, il suffit de
savoir que le groupe de Picard de G/P est abélien, libre et de rang égal au nombre de
racines simples qui ne sont pas dans le sous-groupe de Levi de la partie réduite de P . Cela
justifie aussi le fait que l’on exprime (voir (1.1.1) ci-dessus) chaque parabolique réduit
en termes des racines simples que sa partie réduite ne contient pas (ce qui s’éloigne des
notations standard dans le domaine).

Théorème C (Version géométrique : Théorème 3.1.1 et Proposition 3.2.19). Soit X
une variété homogène projective, en caractéristique quelconque, dont le groupe de Picard
est isomorphe à Z. Alors X est soit isomorphe à une variété homogène de stabilisateur
un parabolique réduit maximal, soit isomorphe à la variété G2-homogène X ; ce deuxième
cas ne se produit qu’en caractéristique 2.

1.4. Classification complète

Finalement, mon travail a permis d’aller plus loin et d’obtenir la liste complète des
sous-groupes paraboliques, pour tout type et toute caractéristique. On travaille ici avec
un groupe G semi-simple et simplement connexe.

Théorème D (Théorème 4.1.1). Soit P un sous-groupe parabolique de G et soient
β1, . . . , βr les racines simples de G telles que

Pred =
r⋂
i=1

P βi .

Alors

P =
r⋂
i=1

Qi,

où Qi est le plus petit sous-groupe de G contenant P et P βi.
En particulier, P est l’intersection de sous-groupes paraboliques ayant une partie réduite
maximale. Ainsi, tous les paraboliques sont de type quasi-standard, sauf dans le cas d’un
corps de base de caractéristique 2 et lorsque G a un facteur de type G2.

Un ingrédient crucial dans la démonstration de ce résultat est le fait que les noyaux
des isogénies sans facteur central sont strictement contenus les uns dans les autres, et
donc ordonnés totalement par inclusion, comme déjà remarqué dans (1.2.1). Encore une
fois, la preuve est différente dans le cas d’un groupe de type G2 en caractéristique 2 et
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doit être traitée séparément.

Tout d’abord, nous nous ramenons à traiter le cas d’un groupe simple et simplement
connexe. Nous remarquons ensuite quelques faits sur les fonctions numériques associées,
définies selon la Définition 1.1.1 ci-dessus. Nous montrons ensuite le lemme suivant qui
est le point clé de la preuve.

Lemme 1.4.1. Avec les notations du Théorème D, considérons une racine simple βi.
Alors

U−βi ∩ P = U−βi ∩Qi.

Pour démontrer ce lemme, nous faisons appel à la notion de diviseur de Schubert et
de courbes de Schubert dans une variété projective homogène X = G/P qui permettent
de décrire de manière combinatoire le groupe de Picard et le cône des 1-cycles effectifs
dans X. Cette description est donnée en détail plus tard : ce n’est pas une conséquence
de la classification, mais plutôt un outil pour la démontrer. Cependant, nous choisissons
de reporter cette partie dans la suite du texte afin que la preuve de la classification soit
autant que possible concentrée sur la combinatoire des systèmes de racines et moins sur
la géométrie. Le point important est que les sous-groupes Qi dans l’énoncé peuvent être
construits d’une manière purement géométrique comme stabilisateurs des points de cer-
tains morphismes qui contractent toutes les courbes de Schubert sauf une.

Une fois le lemme ci-dessus démontré, nous poursuivons par une analyse au cas par cas
selon le diagramme de Dynkin de G et la caractéristique du corps de base.

1.5. Géométrie des G/P

L’existence de sous-groupes paraboliques non réduits en caractéristique positive au-
torise des comportements différents et plus riches des espaces homogènes qui leur corres-
pondent.

Pour illustrer certains aspects géométriques, nous pouvons revenir à l’exemple (1.1.2).
Pour m ≥ 1, la variété Xm n’est pas localement rigide, c’est-à-dire que son fibré tangent
admet de la cohomologie en degré 1. Cela ne peut pas arriver dans le cas d’un stabilisa-
teur réduit : voir [Dem, Théorème 2]. De plus, chaque Xm étant une hypersurface, nous
pouvons calculer son fibré canonique grâce à la formule d’adjonction. Nous en déduisons
qu’une telle variété n’est pas de Fano lorsque pm > 3 ; cela représente encore une fois un
type de comportement qui s’éloigne de celui en caractéristique nulle. On peut mentionner
le travail récent dans cette direction par [Tot, Theorem 2.1, Theorem 3.1] : on y trouve
une famille d’exemples, remarquables car relativement simples à définir, de variétés G/P
qui sont de Fano et qui ne satisfont pas le théorème d’annulation de Kodaira pour les
fibrés amples (par variété de Fano, nous entendons une variété projective lisse dont le
fibré anti-canonique est ample).

1.5.1. Diviseurs, courbes et contractions. Tout d’abord, nous obtenons une des-
cription explicite des classes de courbes et de diviseurs. Rappelons que les variétés sur



1.5. GÉOMÉTRIE DES G/P 21

lesquelles nous portons notre attention sont lisses, projectives et munies d’une action
transitive de G. Sous ces hypothèses, il existe une stratification, connue sous le nom de
décomposition de Białynicki-Birula (ce qui, dans le cas d’un stabilisateur réduit, revient
à la décomposition de Bruhat, qui est mieux connue). Le travail original sur le sujet est
présenté dans [BB] ; pour une formulation du point de vue de la théorie des schémas, voir
[Mil, Theorem 13.47]. Cette décomposition consiste à écrire la variété X = G/P comme
une réunion disjointe de cellules, isomorphes à des espaces affines, indexées par l’ensemble
fini des points fixes de l’action de T sur X, où T est le tore maximal que l’on se donne
dans G.

En particulier, il existe une unique cellule ouverte

X− ⊂ X

isomorphe à l’espace affine de dimension égale à la dimension de X. Cette cellule est
obtenue comme B−-orbite du point de base de X, où B− est le sous-groupe de Borel
opposé à B (c’est-à-dire, associé aux racines négatives). Les composantes irréductibles de
X\X− sont indexées par les racines simples α qui ne sont pas dans le sous-groupe de
Levi de Pred. En prenant leur adhérence de Zariski, nous obtenons une famille finie de
diviseurs Dα effectifs, donc globalement engendrés, dont les classes d’équivalence linéaire
forment une base du groupe de Picard de X. On les appelle les diviseurs de Schubert de X.
Nous construisons de façon analogue les objets duaux, c’est-à-dire les courbes de Schubert
Cβ, qui sont des courbes rationnelles lisses B-stables, indexées par le même ensemble de
racines simples, et qui donnent une base du cône des 1-cycles effectifs dans X. De plus,
nous vérifions que les nombres d’intersection correspondants satisfont

Dα · Cβ = δαβ.

À partir de chaque diviseur Dα, nous définissons un morphisme

fα : X −! G/Qα =: Yα.(1.5.1)

L’application fα est une contraction, c’est-à-dire qu’elle satisfait l’égalité

(fα)∗OX = OYα .

De plus, fα est l’unique contraction de source X telle que toutes les courbes de Schubert
sauf Cα soient contractées en un point.

Après cette définition, donnée en termes purement géométriques, nous démontrons que
Qα est en effet le sous-groupe engendré par P et Pα, ce qui fait des Qα les sous-groupes
à partir desquels on peut retrouver P par intersection (voir Théorème D).

1.5.2. Nouveaux exemples en rang 2. Maintenant que notre attention se porte
sur la géométrie des variétés homogènes, une question centrale se pose : pour un parabo-
lique de type quasi-standard P , la variété G/P est-elle toujours isomorphe à une variété
G′/P ′, où P ′ est de type standard ? Cette assertion est vérifiée pour une variété dont le
groupe de Picard est isomorphe à Z, comme conséquence du Théorème A.
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Nous construisons un premier contre-exemple en rang 2. Autrement dit, en utilisant le
noyau de l’isogénie très spéciale, nous définissons une famille de variétés homogènes de
rang de Picard 2, dont les variétés sous-jacentes ne sont pas de type standard. Par cette
terminologie, nous entendons qu’elles ne sont isomorphes (en tant que variétés) à aucun
quotient G/P ayant pour stabilisateur un sous-groupe parabolique P de type standard.
L’énoncé suivant fournit ce contre-exemple, où les conventions concernant les systèmes de
racines sont toujours celles de [Bou].

Proposition 1.5.1 (Proposition 5.3.1). Soit G un groupe simple et simplement connexe
sur un corps algébriquement clos de caractéristique 2. Soient α et β des racines simples
distinctes telles que : ou bien G est de type Bn ou Cn et la paire (α, β) est de la forme
(αj, αi) avec i < j < n ou j = n et i < n− 1, ou bien G est de type F4 et la paire (α, β)

est l’une parmi

(α1, α4), (α2, α1), (α2, α4), (α3, α1), (α3, α4), (α4, α1).

Alors l’espace homogène
X = G/(NP α ∩ P β)

n’est pas de type standard, où N = NG est le noyau de l’isogénie très spéciale de G.

L’enoncé ci-dessus est assez technique, mais on peut mieux le comprendre de la façon
suivante. L’hypothèse sur la caractéristique vise à assurer l’existence de l’isogénie très
spéciale. L’hypothèse combinatoire sur les racines α et β est elle aussi cruciale pour éviter
l’égalité

NP α ∩ P β = 1GP
α ∩ P β,

autrement, le terme de gauche serait déjà de type standard.

La preuve de la Proposition 1.5.1 repose sur la description des courbes et des diviseurs de
Schubert, ainsi que sur les résultats concernant les groupes d’automorphismes des variétés
de drapeaux, établis par Demazure dans [Dem].

1.5.3. Conséquences de la classification. Comme première application du résul-
tat principal (Théorème D), nous déterminons de manière explicite les sous-groupes Qi

qui apparaissent dans l’énoncé de la classification, sous l’hypothèse que le parabolique P
de départ soit de type standard. Il s’avère que la description de P comme étant l’inter-
section des Qi n’est pas aussi simple qu’elle pourrait sembler à première vue ; à vrai dire,
même dans le cas où P est un parabolique de type standard, certains des sous-groupes
Qi peuvent (selon la combinatoire du système de racines considéré) être de type quasi-
standard, voire des sous-groupes exotiques dans le cas de type G2.

Nous considérons ensuite la question de l’existence d’au moins une contraction lisse issue
d’une variété homogène X = G/P . Après réduction au cas où P ne contient le noyau d’au-
cune isogénie sans facteur central, cela revient à se demander si le stabilisateur P peut
être contenu dans un sous-groupe parabolique lisse. Une telle contraction existe pour tout
parabolique de type quasi-standard, mais elle peut ne pas exister dans certains cas exo-
tiques en type G2 et caractéristique 2.
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En itérant une telle construction, nous définissons à partir de X (sous l’hypothèse que
le stabilisateur P soit de type quasi-standard) une suite finie de fibrations, localement
triviales pour la topologie de Zariski, dont les fibres sont de type standard, avec groupe
de Picard isomorphe à Z.

Une autre question naturelle à se poser concerne le comportement des fibrés en droites
et leur positivité sur cette classe de variétés. Nous obtenons des premiers éléments de
réponse : si on s’intéresse aux variétés sous-jacentes, le Théorème D affirme qu’il existe
une immersion fermée

G/P = X
∏

iG/Q
i = Yi .

De leur côté, chaque Yi a par définition un groupe de Picard isomorphe à Z. Cela signifie,
grâce au Théorème A, que soit Yi est isomorphe à une variété homogène ayant pour
stabilisateur un sous-groupe parabolique réduit maximal, soit elle est isomorphe à l’unique
variété G2-homogène exotique X . Comme première application de l’existence de cette
immersion fermée, nous déduisons que tout fibré en droites ample sur X est en fait très
ample.

1.5.4. Un résultat de finitude. Nous commençons par mentionner quelques ré-
sultats, vrais dans le cas d’un parabolique réduit, mais faux en caractéristique positive.
Premièrement, si on se donne un entier positif n, il n’existe qu’un nombre fini de variétés
G/P de dimension n et ayant stabilisateur réduit. De plus, toute variété de cette forme
est de Fano (voir [Kol, V, Theorem 1.4]). Si nous autorisons le stabilisateur à être non
réduit, un contre-exemple à ces deux propriétés est donné par la famille des variétés Xm

définie dans (1.1.2).

La troisième et dernière propriété nécessite une définition et quelques explications sup-
plémentaires. Une variété X, sur un corps de caractéristique p > 0, est dite scindée (par
le Frobenius) si le morphisme

OX(1) −! (FX)∗OX

se scinde en tant que morphisme de OX(1)-modules, où

FX : X −! X(1)

est le morphisme de Frobenius relatif de X. Cette propriété fournit des informations
importantes sur la géométrie de X. Par exemple, si une variété X est scindée, on peut
en déduire des propriétés d’annulation pour la cohomologie des fibrés en droites amples
sur X ; voir [BK, Theorem 1.2.9]. En particulier, les variétés G/P avec P réduit sont
scindées par le Frobenius. Encore une fois, cette propriété n’est plus vérifiée dans le cas
d’un parabolique non réduit. Lauritzen, dans [Lau1], démontre que, si la caractéristique
est strictement supérieure au nombre de Coxeter de G, alors X = G/P est scindée si et
seulement si

P = mGPred

pour un certain entier m. Autrement dit, si et seulement si X est isomorphe à une variété
ayant stabilisateur réduit. Cependant, de notre point de vue cela n’est pas suffisant. En



24 1. INTRODUCTION

effet, si la caractéristique est plus grande que le nombre de Coxeter, alors tout parabolique
est forcément de type standard.

Le théorème suivant, qui est le dernier résultat obtenu dans mon travail de thèse, est
un résultat de finitude concernant les propriétés ci-dessus.

Théorème E (Théorème 5.4.18). Soit n ≥ 1 un entier fixé.
Il existe un nombre fini de classes d’isomorphisme de variétés homogènes (projectives,
rationnelles) de dimension n dont le fibré anti-canonique est globalement engendré.

Ce résultat a plusieurs conséquences. Pour tout n, il n’existe qu’un nombre fini de
classes d’isomorphisme de variétés G/P qui satisfont une des assertions parmi : être de
Fano, ou bien être scindée par le Frobenius, ou bien avoir le fibré tangent globalement
engendré.

1.6. Organisation du manuscrit

1.6.1. Structure du texte. Le Chapitre 2 est dédié à la motivation du problème,
son histoire, les notations et les notions préliminaires nécessaires pour la suite. On y
trouve aussi la définition d’isogénie très spéciale et la propriété de factorisation des iso-
génies énoncée dans Proposition 1.2.1 ; cela correspond à la première partie de l’article
[Mac1].

Dans le Chapitre 3, nous obtenons la classification de tous les paraboliques ayant une
partie réduite maximale (Théorème A et Théorème B), ainsi que l’interprétation géomé-
trique (Théorème C). Cela correspond au coeur de l’article [Mac1].

Dans le Chapitre 4, nous obtenons la classification de tous les paraboliques (Théorème D),
ce qui fait principalement référence à [Mac2].

La structure de la dernière partie, c’est-à-dire du Chapitre 5, est un peu plus complexe,
car elle mélange plusieurs éléments et résultats de [Mac1] ainsi que de [Mac2]. D’abord,
nous rappelons et précisons un certain nombre de faits sur la décomposition de Białynicki-
Birula. Cela nous amène à la construction des diviseurs et des courbes de Schubert qui
permettent de décrire le groupe de Picard et le groupe des 1-cycles à équivalence numé-
rique près. Cette description combinatoire constitue un outil très important pour achever
la classification du chapitre précédent. Nous passons ensuite aux conséquences géomé-
triques de nos résultats. Tout d’abord, nous présentons de nouveaux exemples de variétés
G/P de rang 2, qui ne sont pas de type standard (Proposition 1.5.1). Nous énonçons
ensuite des conséquences géométriques plus générales, comme le fait que tout fibré en
droites ample soit très ample sur ces variétés. Nous terminons avec un résultat de finitude
concernant le fibré anti-canonique des G/P (Théorème E).

Pour des raisons de brièveté, la description concernant le plongement du groupe excep-
tionnel de type G2 dans le groupe orthogonal SO7, ainsi que les calculs des sous-groupes
associés aux racines (par rapport à ce plongement) sont regroupés dans le Chapitre 6.



CHAPTER 2

Preliminaries

Abstract. We aim to classify rational projective homogeneous varieties; let us contex-
tualize our problem into a step-by-step framework. First, the question of the relevance
of small characteristics is addressed; then we specialize to algebraic groups, introducing
infinitesimal groups and related geometric behaviors. Finally, we delve deeper into the
classification of non-reduced parabolic subgroups of semisimple groups, together with
the history of this mathematical question. This leads to the study of isogenies between
simple, simply connected groups.

2.1. Organisation of the manuscript

2.1.1. Structure of the text. The Chapter 2 is dedicated to motivating our classi-
fication problem, together with its history and the preliminary notions that are going to
be useful later on. We also introduce the notion of very special isogeny, which allows us
to state a factorisation property of isogenies, as stated in Proposition 1.2.1. This corres-
ponds to the first part of the article [Mac1].

In Chapter 3, we prove the classification of all parabolic subgroups whose reduced part is
maximal (Théorème A et Théorème B), as well as the geometric interpretation of such a
classification (Théorème C). This corresponds to the hearth of the work in [Mac1].

Moving on to Chapter 4, we are able to obtain a statement classifying all parabolic
subgroup of semisimple groups (Théorème D), which refers mainly to the article [Mac2].

The structure of the last part of this manuscript, namely of Chapter 5, is slightly more
complex, since it is obtaining by putting together different results coming from [Mac1]
as well as from [Mac2]. First, we recall and precise a certain number of facts concerning
the Białynicki-Birula decomposition of homogeneous varieties. This leads us to the con-
struction of the Schubert divisors and the Schubert curves, which allows us to describe
the Picard group, as well as the group of 1-cycles up to numerical equivalence. This
combinatorial description provides a very important tool in order to achieve the classi-
fication of the preceding chapter. Next, we move on to the geometric consequences of
our results. First of all, we exhibit new examples of (projective, rational) homogeneous
varieties G/P of Picard rank 2, which are not of standard type (by this terminology, we
mean that they cannot be expressed as a quotient of a semi-simple group by a parabolic
subgroup of standard type; see Proposition 1.5.1). We then move on to prove some more
general geometric properties, such as the fact that any ample line bundle on such varieties
is actually very ample. The last result presented in this text is a finiteness properties,
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concerning the anti-canonical line bundle on homogeneous spaces (Théorème E).

For brevity reasons, the description of how the exceptional group of type G2 embeds
into the special orthogonal group SO7, as well as the computation of the root subgroups
(with respect to this embedding) are gathered in Chapter 6.

2.2. Linear algebraic groups in positive characteristics

2.2.1. Small characteristics. The natural question that has been arising in the
context of my first three years of research in mathematics is the following: why should an
(algebraic) geometer care about problems in small characteristics?

I will try, in a certainly personal and partial way, to give some answers to this question.
First of all, when addressing a given classification problem in geometry, we look for a
statement which is as concise and as simple as possible, but at the same time which is
uniform, meaning that it does not depend on the basis over which one is working. Such
kind of statements give, in my opinion, a better understanding of the intrinsic geometry of
the objects that they describe. A striking example, which is a fundamental result allowing
this thesis (and a whole important area of research) to exist, is the classification of split
semisimple algebraic groups of adjoint type. These groups can be defined over the ring of
the integers, hence they make sense over any basis.

However, the above might not be sufficient by itself as a sole motivation. Another
important aspect is that positive characteristics, especially small ones, offer an abundance
of solutions for equations. This greater flexibility provides a richer behavior of geometric
objects, which can manifest in two fundamentally distinct ways.

Same objects, different properties : this is the case of semisimple algebraic groups over
algebraically closed fields. As mentioned above, these objects are the same independently
of characteristics; however, they can have nonreduced subgroups in prime characteristics,
and the geometric properties of their homogeneous spaces significantly vary, as we explore
in a later part of this thesis; see for example [HL, Section 4], [Lau1] and [Tot, Theorem
3.1]. Another significant example of this behavior, which goes beyond the area of group
schemes, can be seen in the failure of vanishing theorems in cohomology, for smooth
projective varieties.

Entirely new objects : on the other side, entirely new mathematical objects can emerge,
some more extravagant than others. The first well-known class of examples in the context
of algebraic groups is provided by kernels of the iterated Frobenius homomorphism, which
are infinitesimal subgroups arising very naturally in any positive characteristic. Let us
also mention the very special isogenies of the simple simply connected groups: these are
described below as being exotic homomorphisms with finite kernel defined in characteristic
two and three; in the case of characteristic two, their existence is closely related to the
behavior of quadratic forms. Aa a last important example, let us mention the classification
of simple Lie algebras, which has been completed in characteristic at least five, thanks
to the Block–Wilson–Strade–Premet Classification Theorem (see [Str]), and which is
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nowhere near to being finished in characteristic two. Instead, it is still a powerful source
of examples and counterexamples, as in [KL], [BLLS] and [CSS].

2.2.2. Basic facts on algebraic groups. From now on, we work over a fixed algeb-
raically closed base field k, of arbitrary characteristic (then rapidly restricting to positive
characteristics); unless explicitly mentioned, all objects and maps are supposed to be
defined over k. The natural numbers, denoted by N, are assumed to contain zero. Most
results we are interested in come from the setting of classical algebraic geometry; never-
theless, we choose to work from the point of view of schemes of finite type over k. For
instance, this comes into play when employing terms such as the kernel of a homomorph-
ism or the intersection of subgroup schemes; these notions are all to be understood in a
scheme-theoretic sense. Concerning algebraic groups, our main references are [Bor] and
[Spr] for the classical theory over an algebraically closed field; as a more recent mono-
graph adopting the point of view of group schemes, we follow [Mil].

A k-group scheme is a scheme over k, together with morphisms

m : G×G −! G (multiplication), i : G −! G (inverse)

and a fixed k-point e = eG, the neutral element, satisfying the usual group axioms. In
other words, it is a group object in the category of schemes over k.

An algebraic group is a group scheme whose underlying scheme is of finite type over
k. By subgroup, we always mean a closed subgroup scheme; this is a crucial point, since
we sometimes deal with infinitesimal subgroups. When defining a certain object, such
as a scheme or a subgroup, we often make use of the functorial notation, identifying the
object with its functor of points: namely, a group scheme is given by a representable
functor from the category of schemes over k (or of k-algebras) to the category of groups.

For instance, the additive group Ga, the multiplicative group Gm and the special linear
group SLn (over k) have as underlying schemes smooth, affine k-varieties, and represent
respectively the following functors from the category of k-algebras to that of groups:

R 7−! (R,+), R 7−! (R×, ·), R 7−! SLn(R).

We often omit to indicate the variable R, ranging over the set of all k-algebras, and write
for example

G = {(x, y) ∈ G2
a : x

p = x+ yp} ⊂ G2
a.

In another direction, a standard example of algebraic group is given by elliptic curves;
being projective varieties, their functor of points is not so easy to define as in the three
cases above.

Definition 2.2.1. An algebraic group is said to be linear if its underlying variety is affine.
Equivalently, it admits a closed embedding into some general linear group GLN for some
natural number N .

The study of algebraic groups is usually divided in two, essentially orthogonal, parts:
linear groups and Abelian varieties. The latter are defined as being smooth, connected
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projective algebraic groups (which in particular implies commutativity of the group struc-
ture), and can be thought of the higher-dimensional generalisation of elliptic curves. This
dévissage into two families can be obtained thanks to the following structure theorem of
Chevalley, proven by Barsotti and Rosenlicht (see [Ros]).

Theorem 2.2.2. Let G be a smooth connected algebraic group; then there is a unique
maximal smooth connected linear algebraic subgroup Gaff, which is normal. Moreover, the
quotient G/Gaff is an Abelian variety.

In this thesis, we focus on linear algebraic groups and in particular on their actions
on smooth projective varieties; we soon further restrict to a very specific and well behaved
class, that of semisimple algebraic groups.

2.2.3. Frobenius kernels. By a fundamental result due to Cartier, all algebraic
groups over an algebraically closed field k of characteristic zero are smooth (or equival-
ently, reduced) over k. However, this very strong property does not hold in positive
characteristic. In this section, we work in characteristic p > 0 and introduce a universal
class of examples of non-reduced algebraic groups: Frobenius kernels. Let

F = Fk : k −! k, t 7−! tp

be the Frobenius homomorphism of the base field k and let A be a k-algebra. We define
A(1) as the tensor product below.

A(1) = A⊗k,F k A

k k
F

In other words, the k-algebra structure of A(1) is given by

t · a = tpa, for all t ∈ k, a ∈ A(1).

The (relative) Frobenius morphism of a k-algebra A is the k-algebra homomorphism

FA : A
(1) −! A, a⊗ t 7−! tap,

obtained by the universal property of the tensor product.

Next, let X = SpecA be an affine scheme and let

X(1) ··= SpecA(1)

be its base change with respect to the Frobenius morphism. The k-scheme morphism
associated to FA is called the (relative) Frobenius morphism of X and is denoted as

FX : X −! X(1).

In other words, the Frobenius morphism of a scheme X can be thought of as being the
identity on the underlying topological space of X, while it raises functions to their p-th
power. The fiber product above is needed in order to make FX a morphism of k-schemes,
which would not be the case otherwise because the Frobenius is clearly not a k-linear
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map. By repeating this construction, we define, for any k-scheme X and for any natural
number m ≥ 1, its m-th Frobenius twist X(m) and its m-th iterated Frobenius morphism

Fm
X : X −! X(m).

Proposition 2.2.3. Let G = SpecA be a linear algebraic group. Then G(1) is also a linear
algebraic group and the iterated Frobenius morphism Fm

G is a morphism of algebraic groups
for any m. We denote the Frobenius kernel of G as

mG ··= ker(Fm
G : G −! G(m)).

A direct consequence of their definition is that Frobenius kernels are infinitesimal
subgroups, meaning that their underlying topological space is a point. This is a basic
remark to make, but it will be essential in order to understand the structure of parabolic
subgroups in positive characteristics.

Example 2.2.4. The Frobenius kernel of the additive group is denoted as αp ⊂ Ga; the
Frobenius kernel of the multiplicative group as µp ⊂ Gm. Moving on to G = SL2, we get

1G =

{(
a b

c d

)
∈ SL2 : a

p = dp = 1, bp = cp = 0

}
.

Definition 2.2.5. Let G be a linear connected algebraic group and H be a nontrivial
subgroup. The height of H (when it is defined) is the smallest positive integer m such that
H is killed by the m-th iterated Frobenius morphism; equivalently, such that H ⊂ mG.
A subgroup H has finite height if and only if it is infinitesimal.

2.2.4. Restricted Lie algebras. Let us gather here some basic facts about Lie
algebras of algebraic groups in positive characteristics; the main references for this subject
are [Hum] and [Str].

A Lie algebra is a k-vector space L, endowed with an operation

L× L −! L, (u, v) 7−! [u, v]

called the bracket operation (or the commutator) and satisfying the following axioms:
• the bracket operation is bilinear;
• [u, u] = 0, for all u ∈ L;
• [u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0 for all u, v, w ∈ L. The last condition is called the
Jacobi identity. Homomorphisms of Lie algebras are linear maps respecting the bracket
operation; Lie subalgebras and Lie ideals are defined in the analogous way. For a fixed
element v of a Lie algebra L, its adjoint map is defined as

ad(v) : L −! L, u 7−! [v, u];

this defines a morphism ad from L to the space of its k-linear derivations, called the
adjoint representation of L.

One of the equivalent ways to associate to an algebraic group G its Lie algebra LieG

(and the most concrete) is to consider the tangent space at the identity element;

LieG ··= Homk(I/I
2, k) = TeG,
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where e ∈ G(k) denotes the identity of G and I the maximal ideal of the local ring of
G at e. Concerning the bracket operation, it can be thought of geometrically as arising
from the interpretation of LieG as the algebra of left invariant derivations on G.

Due to the smoothness of algebraic groups, in characteristic zero we can recover a lot
of information about a subgroup from its Lie algebra; namely, if H is a subgroup of G,
both are connected and have the same Lie algebra, then they must coincide. In positive
characteristic, this is clearly not enough, because the Lie algebra of a connected linear
algebraic group coincides with the one of its Frobenius kernel. In order to deal with this
issue, we need to introduce more structure.

Definition 2.2.6. A p-mapping on a Lie algebra L is a map

(−)[p] : L −! L

such that
• for all v ∈ L, ad(v[p]) = (ad(v))p;
• for all λ ∈ k and all v ∈ L, (λv)[p] = λpv[p];
• for all u, v ∈ L, we have

(u+ v)[p] = u[p] + v[p] +

p−1∑
i=1

si(u, v),

where the si are defined as follows:

si(u, v) ··= −1

i

∑
σ

ad(σ(1)) ad(σ(2)) · · · ad(σ(p− 1))(v),

with σ running over the maps from {1, . . . , p − 1} to {u, v} taking exactly i times the
value u.

Essentially, the above three conditions generalise the notion of the Frobenius morph-
ism; namely, any associative k-algebra A can be endowed with a natural Lie algebra
structure and a p-mapping, given by

[a, b] = ab− ba and a 7−! ap

respectively.

Definition 2.2.7. A p-Lie algebra, or restricted Lie algebra, is a Lie algebra equipped
with a p-mapping.

The following is a crucial result (see [SGA3, Exposé VVIA, section 7]) which helps
us see clearly how much information we can recover from the Lie algebra of a subgroup;
it is frequently employed throughout this thesis.

Theorem 2.2.8. Let G be an algebraic group. There is an equivalence of categories
between subgroups of G of height one and p-Lie subalgebras of LieG, explicitely given by
H ⇝ LieH.
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2.3. Parabolic subgroups and homogeneous varieties

We introduce here our main object of study, namely homogeneous varieties: we start
by a clear definition of what this means, then move on to a structure theorem, illustrating
why our classification problems can be reduced to the study of parabolic subgroup schemes
of semisimple groups. Such subgroups are well understood in characteristic zero, but
many more appear in positive characteristics, as they can be non-reduced. We start by
introducing their combinatorial description in characteristic zero, then move on to the
work of [Wen], [HL] in characteristic at least five, which finally leads to the start of my
PhD.

Remark 2.3.1. The definition of projective homogeneous spaces that is adopted here
relies on the notion of automorphism group; for the sake of clarity, let us recall it. For a
proper algebraic scheme X over a perfect field k, the functor

AutX : (Sch/k)red −! Grp, T 7−! AutT (XT ),

sending a reduced k-scheme T to the group of automorphisms of T -schemes of X ×k T ,
is represented by a reduced group scheme AutX which is locally of finite type over k: see
[MO, Theorem 3.6]. We denote as

Aut0X

its identity component, which is a smooth connected algebraic group, acting faithfully on
X.

Definition 2.3.2. A projective variety X is said to be homogeneous if the algebraic
group Aut0X acts transitively on the underlying topological space of X. In particular,
such varieties are smooth.

For instance, for any natural number n ≥ 1, the projective space Pn is homogeneous
under the action of its automorphism group PGLn+1.

2.3.1. Semisimple groups and root systems. Let us introduce the notions of
reductive and semisimple groups and illustrate the reason why we can restrict to these
classes of groups for our purposes.

Definition 2.3.3. A torus is an algebraic group T , isomorphic to some power Gr
m of the

multiplicative group. A Borel subgroup of a smooth linear algebraic group G is a maximal
smooth connected solvable subgroup. A parabolic subgroup is a subgroup P of G such
that the quotient G/P is projective.

Proposition 2.3.4. Let G be a smooth linear algebraic group. The Borel subgroups of
G are all G(k)-conjugate; these are characterized by being the smooth connected solvable
subgroups B such that the quotient G/B is projective. Moreover, parabolic subgroups are
precisely those containing a Borel subgroup.

Definition 2.3.5. The unipotent radical Ru(G) of an algebraic group G is the largest
smooth connected unipotent normal subgroup. A reductive group is a smooth, connected,
linear algebraic group G such that Ru(G) = e; equivalently, it does not contain any
nontrivial smooth connected unipotent normal subgroup.
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Let us emphasize that the above does not coincide with the notion of linear reductivity
in general; a group is said to be linearly reductive if all of its representations are semisimple.
This holds true for reductive groups in characteristic zero, however, it fails in positive
characteristic. Indeed, consider the group GLn over a field of characteristic p > 0; together
with its action on

V ··= Symp(kn),

coming from the standard action on kn via base change. Then V is a G-module containing
a simple submodule, consisting of the elements vp with v inV , which does not admit any
stable complement.

Definition 2.3.6. The radical R(G) of an algebraic group G is the largest smooth con-
nected solvable normal subgroup. A semisimple group is a smooth, connected, linear
algebraic group G such that R(G) = e; equivalently, it does not contain any nontrivial
connected solvable normal subgroup.

The following fundamental structure result is due to [Sal, Theorem 5.2].

Theorem 2.3.7. Let X be a smooth projective homogeneous variety; then there is an
isomorphism

X ≃ A×G/P,

where A is an Abelian variety, G is a semisimple group of adjoint type and P a parabolic
subgroup of G.

Let us notice that, since the center of G is contained in any maximal torus, we can
replace G with its simply connected cover and P with the corresponding pre-image.
Moreover, the above structure theorem implies that all homogeneous varieties with dis-
crete Picard group are of the form G/P , because the Abelian variety in the statement
must be reduced to a point.

Remark 2.3.8. Let us make some historical observations concerning terminology: the
term flag variety associated to a semisimple groupG denotes the smooth projective variety
G/B where B is a Borel subgroup. This choice comes from the fact that, for the special
linear group G = SLn, the flag variety is the space parametrizing all complete flags (of
vector subspaces) of an n-dimensional vector space over k. A natural generalization is
the notion of generalized flag variety, which is usually employed when speaking about the
variety G/P , where G is semisimple and P is some reduced parabolic subgroup. Since
here we are mostly interested in dealing with non-reduced parabolic subgroups, it is worth
mentioning that [HL] choose the term unseparated flag variety when P is non-reduced.
In this text, we prefer to call all of the above spaces just rational projective homogeneous
varieties. These varieties are rational because they contain an open subset isomorphic
to affine space; this can be seen for example by taking the open cell with respect to the
Białynicki-Birula decomposition; this decomposition is discussed in detail in Chapter 5.

Now that we have made the reduction to the semisimple case, we can introduce some
standard important notation, which allows to define the very important ingredient of the
structure of the semisimple groups: root systems.
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Let us consider, for any torus S ≃ Gr
m, the free Abelian groups

X(S) = HomGrp(S,Gm) and X∗(S) = HomGrp(Gm, S);

these are called respectively the group of characters and cocharacters of S and are iso-
morphic to Zr. For historical reasons via the theory of compact Lie groups, it is a standard
convention to use additive notation when discussing elements of the character and cochar-
acter lattices. Composition defines the following perfect duality

X(S)×X∗(S) −! Z, (α, λ) 7−! α ◦ λ.

A very important property of tori (and more generally, of their subgroups, which are
called groups of multiplicative type) is that their representations are completely reducible.
More precisely, any finite-dimensional linear representation V of a torus S decomposes as
a direct sum

V =
⊕

λ∈X(S)

Vλ, Vλ = {v ∈ V : t · v = λ(t)v, for all t ∈ S}.

Using terminology coming from representation theory, we call Vλ the weight space associ-
ated to the character λ; the finitely many characters with nonzero weight space are called
weights of the S-action on V .

Next, let us go back to our maximal torus T contained in the semisimple group G,
and consider the T -action on the group G given by conjugation; this yields a T -action
on the Lie algebra LieG. By the complete reducibility property we just stated, there is a
decomposition into weight spaces

LieG = LieT ⊕

(⊕
γ∈Φ

gγ

)
,

where (by another impressive property of groups of multiplicative type - see [CGP, Pro-
position A.8.10] or [Mil, Theorem 13.33]) the fixed points of the action coincide with
LieT . The finite set

Φ = Φ(G, T )

consists of the non-trivial torus characters such that the corresponding weight space

gγ ··= {X ∈ LieG : t ·X = γ(t)X, for all t ∈ T}

is nonzero. These are called the roots of G with respect to the maximal torus T . It is
an important structure result that the root spaces gγ are actually one dimensional, and
lift to copies of the additive group inside of G; more precisely, there are T -equivariant
isomorphisms

uγ : Ga
∼

−! Uγ ⊂ G,

so that the T -action is given by

t · uγ(x) = uγ(γ(t)x) for all t ∈ T,

where Gm acts on Ga by scalar multiplication. The subgroup Uγ is called a root subgroup,
and the corresponding map uγ is the associated root homomorphism. We denote as Φ+

the subset of positive roots associated to the fixed Borel subgroup B; namely, a root γ is
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positive if and only if the root subgroup Uγ is contained in B. Moreover, once the Borel
subgroup is chosen, there is a uniquely determined basis of the so-called simple roots,
namely a subset ∆ ⊂ Φ+ such that any positive (resp. negative) root can be written
as a linear combination of elements of ∆, with non-negative (resp. non-positive) integer
coefficients. The group G is generated by the maximal torus, together with the root
subgroups associated to simple roots and to their opposites.

Example 2.3.9. As a universal fundamental example, let us consider G = SLn, together
with the maximal torus T of diagonal matrices

T ∋ t = diag(t1, . . . , tn), t1 · . . . · tn = 1

and the Borel subgroup B of upper triangular invertible ones. Then the weight decom-
position of the Lie algebra of G is as follows:

LieG = LieT ⊕

(⊕
i ̸=j

kEij

)
,

where the matrix Eij has all zero entries except for a 1 in the (i, j)-th position. Denoting
as εi the character sending t to ti, one has that T acts on the line kEij with weight εi−εj,
hence

Φ = {εi − εj, i ̸= j} ⊃ Φ+ = {εi − εj, i < j} ⊃ ∆ = {εi − εi+1, 1 ≤ i ≤ n− 1}.

For more details on this, including the abstract definitions of root system, root datum,
the Existence and Isogeny Theorem for semisimple groups and the corresponding Dynkin
diagrams, we refer to [Bou] and to [Mil, Appendix C].

2.3.2. Reduced parabolics. Let G ⊃ B ⊃ T be respectively a semisimple, simply
connected algebraic group over k, a Borel subgroup and a maximal torus contained in
it. Our aim is to classify all homogeneous projective G-varieties; these are quotients of
the form G/P , where P is a parabolic subgroup of G. By the conjugacy of the Borel
subgroups (Proposition 2.3.4) we might restrict ourselves to those containing the Borel
subgroup B; from now on, every parabolic subgroup satisfies this assumption, unless
otherwise mentioned.

Definition 2.3.10. For any simple root α, there is a unique maximal (reduced) parabolic
subgroup generated by B and by all the U−β, where β ̸= α ranges over the simple roots.
It is uniquely determined as being the largest reduced subgroup containing B and not
containing the root subgroup U−α. We will denote it as

Pα;

let us emphasise that the above notation is not standard and that these subgroups play
a crucial role in our classification problem.
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Example 2.3.11. Let us keep the notation of Example 2.3.9. As a parabolic subgroup
of SLn, one can consider the following:


∗

∗
. . .

∗
∗




⊂




∗ · · · ∗

∗
. . .

...

∗
∗




⊂ Pm ··=




∗ ∗ · · · ∗
∗ ∗ · · · ∗

∗ · · · ∗
...

. . .
...

∗ · · · ∗




,

In other words, the subgroup Pm, for 1 ≤ m ≤ n− 1, is generated by the Borel subgroup
together with two blocks of size m and n−m on the diagonal. In more geometric terms,
we can observe that the corresponding homogeneous variety G/Pm is the Grassmannian of
m-dimensional vector subspaces in kn. With the notation introduced in Definition 2.3.10,

Pm = P εm−εm+1 ;

indeed, Pm contains all the copies of Ga corresponding to entries just below the diagonal,
but it has trivial intersection with U−εm+εm+1 .

More generally, we can classify in a combinatorial way all reduced parabolic subgroups
of a given semisimple group: once the Borel is fixed, these subgroups are uniquely determ-
ined by the simple roots forming a basis for the root system of a Levi subgroup. This is
a well-known result; let us formulate it in a slightly different way, focusing rather on the
simple roots which are not contained in a Levi subgroup. We make this choice of notation
because it makes the statement easier to generalize and adapt to the non-reduced case
later on.

Theorem 2.3.12. There is a bijection between subsets of the basis ∆ and reduced
parabolic subgroups, associating to some I ⊂ ∆ the subgroup

PI =
⋂

α∈∆\I

Pα.

In particular, the above result allows one to classify all parabolic subgroups over an
algebraically closed field of characteristic zero.

2.3.3. The work of Wenzel, Haboush and Lauritzen. From now on, unless
otherwise stated, we will place ourselves over an algebraically closed field k of prime
characteristic p > 0. Let us start with a few examples, which are rather easy to construct
but contain already a lot of geometric information.

Example 2.3.13. Let G = SL2; the simplest non-reduced parabolic subgroup one can
construct is

P =

{(
a b

c d

)
∈ SL2 : c

p = 0

}
= 1GB ⊂ G,

which is obtained from the Borel by fattening with the Frobenius kernel (see Example 2.2.4
above). The corresponding homogeneous variety, however, is nothing new: it is the pro-
jective line P1, together with the standard SL2-action twisted once by the Frobenius
morphism.
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Example 2.3.14. Let us consider the following twisted incidence variety in the product
of two projective planes

SL3 ⟳ Xm ··= {xp
m

0 y0 + xp
m

1 y1 + xp
m

2 y2 = 0} ⊂ P2 ×P2,

where m is a non-negative integer. Moreover, let us consider the action of G = SL3 on
P2 ×P2, acting on the first copy of P2 with the standard action by base change, and on
the second copy of P2 with the linear dual of the same action, but twisted by an m-th
Frobenius morphism. This way, the variety Xm is preserved by the action, and we can
see it as an SL3-homogeneous variety. If we consider the coordinate point

([1 : 0 : 0], [0 : 0 : 1]) ∈ Xm,

an explicit computation of its stabiliser P(m) gives

P(m) =


a b c

0 e f

0 h i

 ∈ SL3 : h
pm = 0

 ⊂ SL3 .

Let us notice that for m = 0, the parabolic subgroup P(0) is just the Borel subgroup of
upper triangular matrices in G; on the other hand, for any m ≥ 1 we have that P(m) is a
non-reduced parabolic.

2.3.3.1. Results in any characteristic. Let us review the main results which were
known on the structure of non-reduced parabolic subgroups, focusing on the statements
which hold without any assumption on the characteristic.

For a non-reduced parabolic subgroup P with reduced part Pred, let

U−
P
··= P ∩Ru(P

−
red)(2.3.1)

be its intersection with the unipotent radical of the opposite reduced parabolic of Pred.
The subgroup U−

P is unipotent, infinitesimal and satisfies

U−
P =

∏
γ∈Φ+\ΦI

(U−
P ∩ U−γ) and P = U−

P × Pred,(2.3.2)

where both identities are isomorphisms of schemes given by the multiplication of G. This
implies that P can be recovered from its reduced part Pred, together with its intersections
with all the root subgroups contained in the opposite unipotent radical Ru(P

−
red). Let

us reformulate this statement in a more combinatorial fashion, introducing a numerical
function. We denote the kernel of the n-th iterated Frobenius of the additive group Ga

as αpn ; while αp∞ is understood to be Ga.

Definition 2.3.15. Let P be a parabolic subgroup of a semisimple group G. The asso-
ciated function

φ : Φ −! N ∪ {∞}

is given by the identity

P ∩ U−γ = u−γ(αpφ(γ)), γ ∈ Φ+.
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In other words, any positive root γ not belonging to the root system of the Levi
subgroup Pred ∩ P−

red is sent to the natural number corresponding to the height of the
finite unipotent subgroup P ∩U−γ; while all other roots are sent to infinity. For instance,
the associated function to the parabolic mGP

α sends all positive roots to infinity, except
for those containing α in their support, which assume value m. The fundamental structure
result below is [Wen, Theorem 10].

Theorem 2.3.16. The parabolic subgroup P is uniquely determined by the function φ,
with no assumption on the characteristic or on the Dynkin diagram of G.

2.3.3.2. Classification in characteristic at least five. Let us assume that the charac-
teristic of the base field is at least 5, or that the Dynkin diagram of G is simply laced
(namely, that each simple factor of G is of type An, Dn, E6, E7 or E8). The (partial)
classification is illustrated in [Wen] and [HL] with the following statement.

Theorem 2.3.17. Under the above assumption, the associated function φ is uniquely
determined by its restriction to ∆.

Let us introduce a particular class of parabolic subgroups, which allows us to re-
formulate the above Theorem in a simpler way, slightly generalizing the formulation of
Theorem 2.3.12.

Definition 2.3.18. A parabolic subgroup is said to be of standard type if it is of the form

P =
⋂

α∈∆\I
mαGP

α

for some non-negative integers mα.

Let us notice that, for a parabolic subgroup of standard type, the integers mα are
uniquely determined as being the height of the intersection

U−α ∩ P.

For instance, the parabolic subgroup P(m) of Example 2.3.14 above is of standard
type: let α1 and α2 be the simple roots of SL3 with respect to the Borel subgroup of
upper triangular matrices, namely

α1 : diag(t1, t2, t3) 7! t1/t2 and α2 : diag(t1, t2, t3) 7! t2/t3.

Then we can write
P(m) = Pα1 ∩ mGP

α2 .

Corollary 2.3.19. If p ≥ 5 or G is simply laced, all parabolic subgroups are of standard
type.

In other words, all parabolic subgroups of G can be obtained from reduced ones by
fattening with Frobenius kernels and intersecting. More precisely, they are all of the form

m1GP
β1 ∩ . . . ∩ mrGP

βr ,

for some simple roots β1, . . . , βr and some non-negative integers m1, . . . ,mr.
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The proof of [Wen] relies heavily on the structure constants (defined over Z) relative
to a Chevalley basis of the Lie algebra of a simply connected semisimple group. By
construction such constants are integers with absolute value strictly less than five: the
hypothesis on the characteristic and on the Dynkin diagram guarantees that they do not
vanish over k. This leads to the following natural question, which marks the starting
point of my PhD thesis:

How can we extend the above results to characteristic two and three?

The above problem has been open since 1993, because [Wen] makes only an allusion to
the fact that there exist examples of exotic (meaning not of standard type) parabolic sub-
groups in type B2 and G2. The best result we could hope for was a uniform description
of parabolics, independent of characteristics; this was the guiding philosophy behind this
work. Actually, due to the vanishing of structure constants, some exotic objects in char-
acteristic two and type G2 arise anyway. This is justified and described in the following
chapter.

2.4. Notation and conventions

Let k be an algebraically closed field of prime characteristic p > 0; when V is a finite-
dimensional k-vector space, we adopt the convention for the projective space P(V ) to be
lines in V . Unless otherwise stated, all objects and morphisms are defined over k. We
work in the setting of group schemes of finite type over k: the terms homomorphism,
kernel, subgroup, intersection are to be understood in such a setting. For two subgroups
H and K of G, we denote as

⟨H,K⟩

the smallest subgroup of G containing both of them.
We consider semisimple groups G, together with a Borel subgroup B and a maximal
torus T contained in it. Let us call Φ the root system of G relative to T , Φ+ the subset
of positive roots associated to the Borel subgroup B and ∆ the corresponding basis of
simple roots. The corresponding opposite Borel subgroup is denoted as B−. Let

W = W (G, T ) = NG(T )/T

be the Weyl group of G relative to T ; moreover, let sα ∈ W be the reflection associated
to the simple root α ∈ ∆.
For any root γ, let Supp(γ) be its support, defined as being the set of simple roots which
have a nonzero coefficient in the expression of γ as linear combination of simple roots
with integer coefficients of the same sign. Moreover, we denote as Uγ the root subgroup
associated to γ, as uγ : Ga ! Uγ its root homomorphism and as gγ the corresponding one-
dimensional Lie subalgebra of LieG. When G is simply connected, let us fix a Chevalley
basis of LieG:

{Xγ, Hα : γ ∈ Φ, α ∈ ∆}.

In particular,

gγ = LieUγ = kXγ and Xγ = duγ(1).
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As in Theorem 2.3.12 above, we denote as PI the reduced parabolic subgroup having
I ⊂ ∆ as set of simple roots of a Levi subgroup. Moreover, we write mG for the kernel of
the m-th iterated Frobenius morphism

Fm
G : G! G(m),

while the maximal reduced parabolic subgroup not containing U−α, for α a simple root,
is called

Pα ··= P∆\{α}.

Concerning irreducible root systems of the different Dynkin types and their respective
basis, we follow notations from [Bou].

2.5. Isogenies with no central factor

The guiding idea is to mimic the known classification, illustrated in Theorem 2.3.12
and in Corollary 2.3.19 in terms of reduced parabolics and Frobenius kernels, by replacing
the Frobenius morphism with any noncentral isogeny (see Theorem 3.3.2). This motivates
the preliminary study and classification of such homomorphisms.

2.5.1. Classifying isogenies. We now classify isogenies between simple algebraic
groups, first recalling definitions and the Isogeny Theorem, then introducing the so-called
very special isogeny πG, whose kernel is a certain subgroup of height one defined by
short roots - which only exists when the Dynkin diagram has an edge of multiplicity
equal to the characteristic - and concluding with the following factorisation result: see
Proposition 2.5.12.

Proposition 2.5.1. Let G be a simple and simply connected algebraic group over k. Let
f : G! G′ be an isogeny. Then there exists a factorisation of f as

f : G G (G)(m) G′,π
Fm
G ρ

where m is a natural number, ρ is a central isogeny and π is either the identity or - when
the Dynkin diagram of G has an edge of multiplicity p - the very special isogeny πG.

We shall start by reviewing what isogenies look like, in particular noncentral ones.
First, let us recall some notations and the statement of the Isogeny Theorem, which is
proved in detail in [Ste].

Definition 2.5.2. Let (G, T ) and (G′, T ′) be reductive algebraic groups over k, equipped
with maximal tori. An isogeny between them is a surjective homomorphism of algebraic
groups f : G! G′ having finite kernel, sending the maximal torus T to the maximal torus
T ′. The degree of f is the order of its kernel. An isogeny is called central if its kernel is
contained in the center of G.

Given an isogeny f , there is an induced map between the character groups

φ ··= X(f|T ) : X(T ′) −! X(T ), χ′ 7−! χ′ ◦ f|T ,

satisfying the conditions :
(i) both φ : X(T ′) ! X(T ) and its dual φ∨ : X∨(T ) ! X∨(T ′) are injective,
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(ii) there exists a bijection Φ ↔ Φ′, denoted α ↔ α′, and integers q(α) which are all
powers of p, such that

φ(α′) = q(α)α and φ∨(α∨) = q(α)α∨′ for all α ∈ Φ.

Geometrically, the integers q(α) arise as follows: the image f(Uα) is a smooth con-
nected unipotent algebraic subgroup of G′ which is normalized by T ′ and isomorphic to
the additive group Ga, hence it must be of the form Uα′ for a unique α′ ∈ Φ′. This gives
the bijection; then, using the T -action on those two root subgroups, one finds that there
exists a constant cα ∈ Gm and an integer q(α) ∈ pN such that

f(uα(x)) = uα′(cαx
q(α))(2.5.1)

for all x ∈ Ga.

Definition 2.5.3. A homomorphism between character groups φ : X(T ′) ! X(T ) satis-
fying conditions (i) and (ii) is called an isogeny of root data.

Theorem 2.5.4 (Isogeny Theorem). Let (G, T ) and (G′, T ′) be reductive algebraic
groups over k. Assume given an isogeny of root data φ : X(T ′) ! X(T ). Then there
exists an isogeny f : (G, T ) ! (G′, T ′) inducing φ. Moreover, f is unique up to an inner
automorphism inn(t) for some t ∈ (T ′/Z(G′))(k).

Proof. See [Ste, 1.5]. □

For instance, an important class of isogenies is given by the ones having central kernel,
which are characterized by the fact that the associated integers q(α) are all equal to 1:
these are not interesting for our purpose of studying parabolic subgroups, since we may
restrict ourselves in the classification to the case of a simply connected group (or an ad-
joint one, depending on the desired properties). The most known example of a noncentral
isogeny is an iterated Frobenius homomorphism Fm, for which α′ = α and all q(α) are
equal to pm. Do other isogenies exist? We shall now consider this question.

2.5.1.1. Very special isogenies. Let us make, for the remaining part of this Chapter,
the assumption that G is simple. The Weyl group W = W (G, T ) acts on roots leaving
the integer q invariant: if the Dynkin diagram of G is simply laced, then there is only one
orbit, hence all q(α) must assume the same value. This means, by the Isogeny Theorem,
that up to inner automorphisms the only noncentral isogenies with source G are iterated
Frobenius homomorphisms.

On the other hand, assume that the Dynkin diagram of G has a multiple edge. In this
setting, there are two distinct orbits under the action of the Weyl group, corresponding to
long and short roots: this allows us, considering an isogeny f : (G, T ) −! (G′, T ′), for two
possibly distinct values of q(α). Let us denote as Φ< and Φ> the subsets of Φ consisting
of short and long roots respectively, and denote the two integer values as

q< ··= q(α) (α ∈ Φ<) and q> ··= q(α) (α ∈ Φ>).(2.5.2)
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Analogously, we fix the following notation for the direct sum of root spaces associated to
roots of a fixed length:

g< ··=
⊕
α∈Φ<

gα =
⊕
α∈Φ<

LieUα and g> ··=
⊕
α∈Φ>

gα =
⊕
α∈Φ>

LieUα.

We now recall a notion introduced in [CGP, Section 7.1], based on previous work
from Borel and Tits, and some of its properties. Also, let us remark that the assumption
we will make is stronger than just asking the group not to be simply laced: to define the
following notions, the characteristic needs to be p = 2 for types Bn, Cn and F4, and p = 3

in type G2. Equivalently, the group G has Dynkin diagram having an edge of multiplicity
p. From now on, let us call this the edge hypothesis. The following result is [CGP, Lemma
7.1.2].

Lemma 2.5.5. Let G be simply connected satisfying the edge hypothesis. Then the vector
subspace

nG ··= ⟨Lie γ∨(Gm) : γ ∈ Φ<⟩ ⊕ g<

is a p-Lie ideal of LieG. Moreover, every nonzero G-submodule of LieG distinct from
LieZ(G) contains nG.

By the equivalence of categories between p-Lie subalgebras of LieG and algebraic
subgroups of G of height one (see Theorem 2.2.8), the p-Lie ideal nG lifts to a unique
normal subgroup of G.

Notation 2.5.6. Let G be simply connected satisfying the edge hypothesis. The algebraic
subgroup of height one having nG as Lie algebra is denoted as NG.

The subgroup NG is characterized by being the unique minimal nontrivial normal
subgroup of G having trivial Frobenius; moreover, it is noncentral. For more details see
[CGP, Definition 7.1.3]. Thus, we are led to consider the homomorphism

πG : G −! G ··= G/NG.

Let us remark that this is a noncentral isogeny with corresponding values q< = p and
q> = 1.

Definition 2.5.7. With the above notations, the homomorphism πG is called the very
special isogeny associated to the simple and simply connected algebraic group G.

The following step towards a better understanding of isogenies is the natural general-
ization of the above notion to the non simply connected case.

Definition 2.5.8. Let G be simple satisfying the edge hypothesis and let ψ : G̃ −! G be
its simply connected cover. Let NG̃ be the kernel of the very special isogeny of G̃ defined
just above. We denote as:

• NG its schematic image via the central isogeny ψ ;
• mNG̃

··= ker(πG̃(m) ◦ Fm
G̃
) = (Fm

G̃
)−1(NG̃(m)), for any m ≥ 1 ;

• mNG the schematic image of mNG̃ via the central isogeny ψ.
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Let us remark that NG is nontrivial, normal and has trivial Frobenius. Moreover,
it is minimal with such properties: let H ⊂ NG be another such subgroup, then H̃ ··=
ψ−1(H)∩NG̃ is nontrivial, normal and of height one, hence by definition contained in NG̃.
This shows that NG = ψ(NG̃) ⊂ ψ(H̃) = H.
It is now natural to ask ourselves if such a subgroup is unique, or if we can give an example
of it appearing in a natural context. This is shown in Lemma 2.5.15 and Example 2.5.16
below.

Up to this point in this section we have assumed that the Dynkin diagram of G has
an edge of multiplicity p. What about the other cases not satisfying the edge hypothesis,
in particular those which are not treated in [Wen]? Let us assume that either p = 3

and that the group G is simple of type Bn, Cn or F4, or that p = 2 and the group G is
simple of type G2. Then an analogous construction to the subgroup NG cannot be done
for the following reason: nontrivial normal subgroups of height one correspond, under the
equivalence of categories, to nonzero p-Lie ideals of LieG, which do not exist due to the
following result (see [Str, 4.4]).

Lemma 2.5.9. Let p = 3 and G be simple of type Bn, Cn for some n ≥ 2, or F4, or let
p = 2 and G simple of type G2. Then LieG is simple as a p-Lie algebra.

2.5.1.2. Factorising isogenies. Let us start by recalling the following result concerning
the factorisation of the Frobenius morphism (see [CGP, Proposition 7.1.5]):

Proposition 2.5.10. Let G be simple and simply connected satisfying the edge hypothesis;
let πG denote its very special isogeny. Then

(a) There is a factorisation of the Frobenius morphism as

FG : (G G G(1))
πG π

which is the only nontrivial factorisation into isogenies with first step admitting
no nontrivial factorisation into isogenies.

(b) The group G is simply connected, with root system Φ isomorphic to the dual of
the root system of G.

(c) The bijection between Φ and Φ defined by πG exchanges long and short roots:
denoting it as α ↔ α, if α is long then α is short and vice-versa.

(d) In the factorisation of point (a), the map π is the very special isogeny of G.

In particular, the restriction (πG)|Uα : Uα ! Uα gives an isomorphism whenever α is
long and a purely inseparable isogeny of degree p whenever α is short.

Lemma 2.5.11. Assume f : G! G′ is a noncentral isogeny with G simply connected and
satisfying the edge hypothesis. If at least one value of q(α) is equal to 1, then necessarily
q> = 1.

Proof. Let us start by proving the following: if all q(α)s are equal to 1, then f is
central. By definition of such integers, if q< = q> = 1 then ker f does not intersect the
root subgroup Uγ for any root γ. Since ker f is normalized by the maximal torus T , this
implies that ker f is itself contained in T , which means exactly that the isogeny is central.
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By our hypothesis, we must hence have at least one value of q which is strictly greater
than 1. Hence, it is enough to get a contradiction with the assumption

q> ̸= 1 and q< = 1.(2.5.3)

Let us assume that (2.5.3) holds and consider the subspace Lie(ker f). The fact that ker f
is a normal subgroup, together with the equivalence of categories of Theorem 2.2.8, means
that Lie(ker f) is a p-Lie ideal of the Lie algebra g, hence in particular it is a G-submodule
of g under the adjoint action. Moreover, it is stricly contained in g because (2.5.3) means
that the whole Frobenius kernel 1G is not contained in ker f . More precisely, (2.5.3)
translates into

g> ⊂ Lie(ker f) and g< ∩ Lie(ker f) = 0.

However, this gives a contradiction with Lemma 2.5.5, and we are done. □

Proposition 2.5.12. Let G be a simple and simply connected algebraic group and let
f : G! G′ be an isogeny. Then there exists a unique factorisation of f as

f : G G (G)(m) G′,π
Fm
G ρ

where ρ is a central isogeny and π is either the identity or - when G satisfies the edge
hypothesis - the very special isogeny πG.

Remark 2.5.13. In particular, this allows us to speak of isogenies with no central factor,
which are the ones we are interested in when classifying parabolic subgroups. Kernels of
such isogenies are totally ordered by inclusion, as follows:

1 ⊊ NG ⊊ 1G ⊊ 1NG ⊊ . . . ⊊ mG ⊊ mNG ⊊ m+1G ⊊ . . . ,

where mNG (which we shall denote simply by mN when G is implicit) is the kernel of the
composition of a very special isogeny and an m-th iterated Frobenius morphism.

Proof. (of Proposition 2.5.12).
Let us start by considering the bijection Φ ↔ Φ′ and the corresponding integers q(α)
associated to the isogeny f , as recalled in (2.5.1).
Step 1: is the isogeny central? This is equivalent to asking whether all integers q(α) are
equal to one. If this is the case, then we are done. Next, we hence assume that at least
one value of q is nontrivial.
Step 2: does p divide q(α) for all roots α? If the group is simply laced this is always
the case, since q is constant. If p = 3 and the group is of type Bn, Cn or F4, or if
p = 2 and the group is of type G2, this is also always the case: indeed, there exists at
least one γ ∈ Φ such that q(γ) ̸= 1. Equivalently, the corresponding root space satisfies
gγ ⊂ h ··= Lie(ker f). Since h is a nontrivial p-Lie ideal of LieG, it must coincide with all
of LieG thanks to Lemma 2.5.9.
In general, if the answer is yes, then the root subspace gα is contained in Lie(ker f) for all
roots. Since the latter is a Lie ideal of LieG, taking brackets implies that the copy of sl2
associated to each root is also contained in Lie(ker f), which thus coincides with LieG.
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This means in particular that the Frobenius kernel of G is contained in the kernel of f ,
so we can factorise by the Frobenius morphism as follows

G G(1) G′

f

FG f ′

and go back to Step 1 replacing f by f ′. Notice that this is possible, since the group G(1)

is still simple and simply connected. Moreover, the new integers associated to the isogeny
f ′ are exactly q(α)/p, hence their values strictly decrease. After this step, we can hence
assume that there are two distinct values q< and q> as defined in (2.5.2). In particular,
let us remark that in this case G is not simply laced.
Step 3: all other cases are now settled using π = idG, so we may and do now assume
that the Dynkin diagram of G has an edge of multiplicity p; moreover, by Lemma 2.5.11
q> = 1 while q< is divisible by p. This last condition means that for any short root γ, the
root subspaces gγ and g−γ are contained in Lie(ker f). This implies that

(sl2)γ = [gγ, g−γ]⊕ gγ ⊕ g−γ = Lie(γ∨(Gm))⊕ gγ ⊕ g−γ ⊂ Lie(ker f),

hence, by definition of the subgroup NG in the simply connected case, we have

⟨Lie(γ∨(Gm)) : γ ∈ Φ<⟩
⊕
γ∈Φ<

gγ =: LieNG ⊂ Lie(ker f).

Since NG is of height one, this implies that NG ⊂ ker f , so we can factorise by the very
special isogeny as follows

G G(1) G′

f

πG f ′

and go back to Step 1. Notice that this is possible, since by Proposition 2.5.10, the group
G is still simple and simply connected. Moreover, we know that the bijection Φ ↔ Φ

exchanges long and short roots and that (πG)|Uα
is an isomorphism for α long, while it

is of degree p when α is short. By denoting as q′(−) the integers associated to the new
isogeny f ′, we then have

(q′)< = q′(α) = q(α) = q> = 1, (α long)

(q′)> = q′(α) = q(α)/p = q</p, (α short)

so the nontrivial integer strictly decreases after this step.
Following this procedure, one necessarily factorises a finite number of times leading finally
to a central isogeny, which is the ρ given in the statement of the proposition. It remains
to show that the Frobenius morphism and the very special isogeny - when it is defined -
commute, in the following sense: if G is simple and simply connected, then

πG(1) ◦ FG = FG ◦ πG.

To prove this, let us apply the factorisation of the Frobenius morphism given in Proposi-
tion 2.5.10 twice to get

πG(1) ◦ FG = πG(1) ◦ (πG ◦ πG) = (πG(1) ◦ πG) ◦ πG = FG ◦ πG.



2.5. ISOGENIES WITH NO CENTRAL FACTOR 45

This means that we can commute π with the Frobenius and assume that it is the first
morphism (or the middle one, which gives another unique factorisation) in the expression
f = ρ ◦ Fm ◦ π. □

Remark 2.5.14. The above Proposition allows us to associate to any isogeny f : G! G′

between simple algebraic groups a diagram of the form

G G′

G̃ G̃′

f

Fm◦π

ψ ρ

where ψ is the simply connected cover of G and ρ is central. In particular, notice that
the group

(G̃)(m),

which is the target of the morphism Fm ◦ π, is simply connected (thanks to Proposi-
tion 2.5.10(b)) and ρ is central, thus this group is the simply connected cover of G′.

The first immediate consequence of this factorisation result is the uniqueness of the
subgroup NG.

Lemma 2.5.15. Let G be simple satisfying the edge hypothesis and H ⊂ G a normal,
noncentral subgroup of height one. Then H contains the subgroup NG. In particular, such
a subgroup NG is unique.

Proof. The conclusion clearly holds when H equals the Frobenius kernel of G, hence
we can assume that H ̸= 1G. To prove that NG ⊂ H it is enough to show that f(NG)

is trivial, where f is the isogeny G ! G/H. Consider the associated diagram given in
Remark 2.5.14:

G G/H

G̃ G̃/H

f

Fm◦π

ψ ρ

where π is either the identity or the very special isogeny of G. We want to show that
the bottom arrow is necessarily the very special isogeny πG̃. First, the subgroup H is
noncentral hence if m = 0 then π = πG̃, otherwise the bottom row would be the identity
and f would be central. Moreover, H ⊊ 1G = ker(F : G ! G(1)) hence the factorisation
of the isogeny f ◦ ψ in the above diagram must satisfy m = 0. Thus, we can conclude
that f ◦ ψ = ρ ◦ πG̃ and

f(NG) = f(ψ(NG̃)) = ρ(πG̃(NG̃)) = 1

as wanted. □

Example 2.5.16. Let us assume p = 2 and consider the group G = SO2n+1 = SO(k2n+1)

in type Bn with n ≥ 2, defined as being relative to the quadratic form

Q(x) = x2n +
n−1∑
i=0

xix2n−i
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and G′ = Sp2n = Sp(k2n) relative to the skew form

b(y, y′) =
n∑
i=1

yiy
′
2n+1−i − y2n+1−iy

′
i.

Since G fixes the middle vector of the canonical basis en, it acts on k2n = k2n+1/ken and
this gives an isogeny

φ : G = SO2n+1 −! Sp2n = G′,

of degree 22n. Since the target of the isogeny is already simply connected, the diagram of
Remark 2.5.14 is as follows:

SO2n+1 Sp2n

Spin2n+1

φ

ψ

Fm◦π

In particular, since ψ is central - identifying the root systems of a group and of its simply
connected cover - the integers q(−) associated to the isogeny φ must be the same as
those associated to the composition Fm ◦ π. In particular, this implies m = 0; hence the
subgroup

NSO2n+1 = kerφ = ψ(kerπ) = ψ(NSpin2n+1
),

which appears in this natural construction, coincides with the one just defined above. In
particular, in this case

LieNSpin2n+1
= Lie(ε∨n(Gm))

⊕
γ∈Φ<

gγ = Lie(ε∨n(Gm))
⊕
1≤i≤n

(g−εi ⊕ gεi .)

To conclude this example, let us determine explicitly the subgroup NSO2n+1 = kerφ and
its Lie algebra, which is needed later on. A matrix in kerφ is of the form

A =



a0

1n
... 0n

an−1

b0 . . . bn−1 an bn+1 . . . b2n
an+1

0n
... 1n
a2n


and the condition for A to be in SO2n+1 gives

Q(Ax) = a2nxn +
∑
j ̸=n

b2jx
2
j +

n−1∑
i=0

(xix2n−i + a2n−ixixn + aix2n−ixn)

=Q(x) = x2n +
n−1∑
i=0

xix2n−i,
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which is equivalent to ai = 0 for all i ̸= n, a2n = 1 and b2i = 0 for all i. Moreover, under
these conditions detA = an = 1, thus we have

NSO2n+1 = kerφ =


 1 0 0

b0 . . . bn−1 1 bn+1 . . . b2n
0 0 1

 ∈ GL2n+1 : bi ∈ αp

 ≃ α2n
p .

Finally, using the equalities in Remark 3.1.11 concerning short roots, we can conclude
that LieNSO2n+1 = g<.





CHAPTER 3

Parabolic subgroups having maximal reduced part

Abstract. We extend to characteristic 2 and 3 the classification of projective homo-
geneous varieties of Picard group Z, corresponding to parabolic subgroups with maximal
reduced subgroup. In all types, except for G2 in characteristic 2, the latter are all ob-
tained as product of a maximal reduced parabolic with the kernel of a purely inseparable
isogeny. For the G2 case, we exhibit an explicit counterexample and show it is the only
one, thus completing the classification.

3.1. Classification in all types but G2

Let us recall that we are working with a semisimple algebraic group G ⊃ B ⊃ T

over an algebraically closed field k of characteristic p > 0, together with a fixed Borel
subgroup B and a maximal torus T contained in it. Our aim is to prove that all projective
homogeneous varieties under a G-action having Picard group of rank one are isomorphic
(as varieties) to homogeneous spaces having reduced stabilizers, in every type except G2

when the characteristic is p = 2.

Let us remark that, since the Picard rank of X = G/P is equal to the number of simple
roots of G not contained in the root system of a Levi subgroup of P , such spaces are
realized as quotients G/P such that the reduced subgroup of the stabilizer P is maximal.
For a full justification of this assertion, see Section 5.1.
The main result is the following :

Theorem 3.1.1. Let X be a projective algebraic variety over an algebraically closed
field of characteristic p > 0, homogeneous under a faithful action of a smooth connected
algebraic group H and having Picard group isomorphic to Z.
Then there is a simple adjoint algebraic group G and a reduced maximal parabolic subgroup
P ⊂ G such that X = G/P , unless p = 2 and H is of type G2.

The purpose of this Section is to prove the above Theorem: the idea is to do it
explicitly case by case, since there seems to be no easy general geometric argument, as
the case of type G2 in characteristic two confirms. We proceed as follows: in Section 3.1.1
we perform elementary reductions to the case where X = G/P with G simple and the
characteristic is 2 or 3, and we recall some notation and results used in the proof. In
Section 3.1.2 we illustrate the strategy of the proof in the simplest case of type An−1. In
Sections 3.1.3 to 3.1.5 we implement the argument in types Bn, Cn and F4. The case of
G2, for which the above Theorem fails in characteristic 2, is then studied separately in
Section 3.2.

49
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3.1.1. Reductions and notation. Let us place ourselves under the hypothesis of
Theorem 3.1.1 and denote as Haff the largest smooth connected affine normal subgroup
of H. By [BSU, Theorem 4.1.1], there is a canonical isomorphism X ≃ A × Y , where
A is an abelian variety and Y is a projective homogeneous variety under a faithful Haff

action. Moreover, Haff is semisimple and of adjoint type. Under our assumptions, the
abelian variety must be a point because otherwise the Picard group of X would not be
discrete. More precisely, the hypothesis PicX = Z implies that we can assume H to be
simple, thanks to the combinatorial description of the Białynicki-Birula decomposition
of homogeneous spaces (of which a detailed statement is given in Theorem 5.1.9). After
such reductions, it is thus enough to prove the following statement.

Theorem 3.1.2. Let G be a simple adjoint group, not of type G2 when the character-
istic is 2, and P a parabolic subgroup such that Pred is maximal. If G acts faithfully on
X = G/P , then P is a reduced parabolic subgroup.

Let us keep notations from Section 2.4. In particular, Pα denotes the maximal reduced
parabolic subgroup not containing U−α, for α a simple root, while mG denotes the kernel of
the m-th iterated relative Frobenius homomorphism of G. Let us also recall for reference
the statement of [Wen, Theorem 14].

Proof. (of Theorem 3.1.1 assuming Theorem 3.1.2) Let us consider G0 = Aut0X to
be the neutral component of the reduced automorphism group of X, as in Remark 2.3.1.
The group G0 is a simple group of adjoint type, acting faithfully on X. Then by the
assumption on the Picard group of X we have X = G0/P0 for some parabolic subgroup
P0 of G0 such that P0,red = Pα for some simple root α of G0. Then one can apply
Theorem 3.1.2 to deduce that P0 actually coincides with its reduced part, and we are
done. □

Theorem 3.1.3. There is an injective map

HomSet(∆,N ∪ {∞}) −! {parabolic subgroups G ⊃ P ⊃ B}

φ 7−!
⋂

α∈∆: φ(α) ̸=∞
φ(α)GP

α.

Moreover, if p ≥ 5 or the Dynkin diagram of G is simply laced, this map is also surjective.

Remark 3.1.4. Let us start by taking a projective variety X which is homogeneous
under the action of a simple group H. By replacing such a group with the image G of
the morphism H ! AutX (see Remark 2.3.1 concerning the notation on automorphism
groups) we may assume that the action is faithful. In particular, this means that there
is no normal algebraic subgroup of G contained in P . However, we need to be careful in
the case-by-case proof because this additional assumption - which is not restrictive on the
varieties considered - forces the group G to be of adjoint type.

Let us place ourselves in the setting of Theorem 3.1.2 and sketch the strategy of the
proof: let P be a nonreduced parabolic subgroup such that

Pred = Pα
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for some simple positive root α ∈ ∆; consider Pα ⊊ P ⊂ G, inducing the corresponding
inclusions on Lie algebras:

LiePα ⊊ LieP ⊂ LieG.

Since we do not have any information a priori on P , we study the quotient

Vα ··= LieG/LiePα,

considered as a Lα-module under the representation given by the adjoint action, where Lα

denotes the Levi subgroup defined as the intersection Pα ∩ (Pα)− with the corresponding
opposite parabolic subgroup.

Let us recall some notation and state a Lemma on structure constants which will be
repeatedly used in what follows:

• the decomposition of the Lie algebra in weight spaces under the T -action is

g = LieG = LieT ⊕

(⊕
γ∈Φ

gγ

)
,

• when G is simply connected, a Chevalley basis of LieG is denoted as

{Xγ, Hα}γ∈Φ,α∈∆.

In particular, gγ = LieUγ = kXγ and Xγ = duγ(1), where uγ is the root homomorphism
Ga

∼
−! Uγ. Whenever the Dynkin diagram of G is not simply laced,

• Φ< ⊂ Φ and Φ> ⊂ Φ denote respectively the subsets of short and long roots,
whenever a multiple edge appears in the Dynkin diagram,

• when G is simply connected and satisfies the edge hypothesis, NG denotes the
finite group scheme of height one whose Lie algebra is given by

LieNG = ⟨Lie(γ∨(Gm)) : γ ∈ Φ< ⟩ ⊕

(⊕
γ∈Φ<

gγ

)
,

as seen in Section 2.5.
• when G is not simply connected and satisfies the edge hypothesis, NG denotes

the schematic image of NG̃ via the universal covering map, where G̃ is the simply
connected cover of G - see again Definition 2.5.8.

Let us state the following Lemma - see [Hum, Chapter VII, 25.2] - which allows us
to calculate all structure constants with respect to a Chevalley basis of the Lie algebra
LieG, where G is simple and simply connected.

Lemma 3.1.5 (Chevalley). Let {Xγ : γ ∈ Φ, Hα : α ∈ ∆} be a Chevalley basis for LieG,
where G is simple and simply connected. Then the resulting structure constants satisfy

(a) [Hα, Hβ] = 0 for all α, β ∈ ∆ ;
(b) [Hα, Xγ] = ⟨α, γ⟩Xγ for all α ∈ ∆, γ ∈ Φ ;
(c) [X−γ, Xγ] is a linear combination with integer coefficients of the Hα’s ;
(d) [Xγ, Xδ] = ±(r + 1)Xγ+δ for all δ ̸= ±γ roots such that the δ-string through γ

goes from γ − rδ to γ + qδ with q ≥ 1, i.e. such that γ + δ is still a root ;
(e) [Xγ, Xδ] = 0 for all roots δ ̸= ±γ such that γ + δ is not a root.
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In particular, the Chevalley relation we use the most frequently is (d): it is important
to recall that structure constants appearing in such equations are among ±1,±2,±3,±4,
which indicates why problems arise in characteristic 2 and 3.

The main line of argument to prove Theorem 3.1.2 is the following: we start by
considering X = G/P with G adjoint acting faithfully and P nonreduced. Then with
some computations on Lie algebras, we show that - when it is defined - NG ⊂ P , while
otherwise 1G ⊂ P . In both cases this gives a normal algebraic subgroup of G contained
in the stabilizer P , which cannot exist due to Remark 3.1.4.

3.1.2. Type An−1. We start with a case whose classification is already covered by
[Wen] - without needing any assumption on the characteristic of the base field - but which
is useful in order to explain the approach used in the other cases below.
Let us consider the reductive group G = GLn in type An−1, its maximal torus T given by
diagonal matrices of the form

t = diag(t1, . . . , tn) ∈ GLn

and the Borel subgroup B of upper triangular matrices. Let us denote as εi ∈ X(T ) the
character sending t 7! ti, for i = 1, . . . , n. Then the root system Φ = Φ(G, T ) is given by

Φ+ = {εi − εj, 1 ≤ i < j ≤ n},

with basis ∆ consisting of the following roots :

α1 = ε1 − ε2, . . . , αn−1 = εn−1 − εn.

Finally, assume given a nonreduced parabolic subgroup P such that Pred = Pm, where
Pm ··= Pαm denotes the maximal reduced parabolic subgroup associated to the simple
positive root αm for a fixed 1 ≤ m < n. Thus, the Levi subgroup Lm of this reduced
parabolic subgroup is a product of a reductive group of type Am−1 and one of type An−m−1:

Lm =

{(
∗ 0

0 ∗

)}
≃ GLm×GLn−m,

and the two factors have as basis of simple roots {α1, . . . , αm−1} and {αm+1, . . . , αn−1}
respectively.
Now, let us consider the vector space Vm = LieG/LiePm. Since

{γ ∈ Φ+ : αm ∈ Supp(γ)} = {εi − εj, i ≤ m < j},

the root spaces in Vm are of the form g−εi+εj = kEji, for i ≤ m < j, where Eji denotes the
square matrix of order n having all zero entries except the (j, i)-th entry which is equal
to 1. Concretely, Vm is isomorphic as Lm-module to the space of all matrices M of size
(n−m)×m. The action of Lm on Vm is given by

(A,B) ·M =

(
A 0

0 B

)(
0 0

M 0

)(
A−1 0

0 B−1

)
=

(
0 0

BMA−1 0

)
= BMA−1,

for allA ∈ GLm, B ∈ GLn−m. This just corresponds to the natural action of GLm×GLn−m
on Homk(k

m, kn−m). In particular, Vm is an irreducible Lm-module.
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Proof. (of Theorem 3.1.2 in type An−1)
Let G = PGLn and let X = G/P such that G acts faithfully on X, P is non-reduced and
has as reduced part a maximal smooth parabolic subgroup. By pulling back both G and
P to the reductive group GLn, we get X = GLn /Q, where Qred = Pαm for some m. Since
LieQ/LiePm is an Lm-submodule of Vm,

LieQ = LieGLn

hence by Theorem 2.2.8 the Frobenius kernel 1GLn is contained in Q. By considering the
images into the quotient PGLn, we get that P contains a nontrivial normal subgroup of
G of height one. Thus, we get a contradiction by Remark 3.1.4. Hence, the parabolic P
needs to be reduced. □

In other words, under the hypothesis of maximality of the reduced subgroup, we find
that there are no new varieties other than those of the known classification. In the
following subsections we will treat the other cases - not included in Wenzel’s article -
where two different root lengths are involved.

Remark 3.1.6. What does this case correspond to, geometrically, on the level of varieties?
We know by [Wen] that Pred = Pαm implies P = rGP

αm for some r ≥ 0, hence

X = G/rGP
αm ≃ G(r)/(Pαm)(r) ≃ G/Pαm = Grassm,n

is isomorphic to the Grassmannian of m-th dimensional vector subspaces in kn, equipped
with the natural G = GLn-action, twisted by the r-th iterated Frobenius morphism. In
particular, the assumption of faithfulness of the action implies r = 0.

3.1.3. Type Cn. Let us consider the group G̃ = Sp2n in type Cn, with n ≥ 2 in
characteristic p = 2 or 3. Defining G̃ as relative to the skew form

b(x, y) =
n∑
i=1

xiy2n+1−i − x2n+1−iyi

on k2n, one has

G̃ =

{
X ∈ GL2n :

tX

(
0 Ωn

−Ωn 0

)
X =

(
0 Ωn

−Ωn 0

)}
, where Ωn =

0 0 1

0 . .
.

0

1 0 0

 .

Deriving this condition gives as Lie algebra

Lie G̃ =

{
M ∈ gl2n :

tM

(
0 Ωn

−Ωn 0

)
+

(
0 Ωn

−Ωn 0

)
M = 0

}

=

{(
A B

C −A♯

)
∈ gl2n : B = B♯ and C = C♯

}
,

where for any square matrix X of order n we denote as X♯ the matrix Ωn
tXΩn, i.e.

(X♯)i,j = Xn+1−j,n+1−i.(3.1.1)
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Remark 3.1.7. Next, let us consider as maximal torus T the one given by diagonal
matrices of the form

t = diag(t1, . . . , tn, t
−1
n , . . . , t−1

1 ) ∈ GL2n

and denote as εi ∈ X∗(T ) the character sending t 7! ti, for i = 1, . . . , n. A direct
computation gives the following root spaces in Lie G̃:

g2εi = k

(
0 Ei,n+1−i

0 0

)
= k

(
0 EiiΩn

0 0

)

g−2εi = k

(
0 0

En+1−i,i 0

)
= k

(
0 0

ΩnEii 0

)
, 1 ≤ i ≤ n,

gεi+εj = k

(
0 Ei,n+1−j + Ej,n+1−i

0 0

)
= k

(
0 (Eij + Eji)Ωn

0 0

)
,

g−εi−εj = k

(
0 0

En+1−i,j + En+1−j,i 0

)
= k

(
0 0

Ωn(Eij + Eji) 0

)
, i < j,

gεi−εj = k

(
Eij 0

0 −En+1−j,n+1−i

)
= k

(
Eij 0

0 −E♯
ij

)
,

g−εi+εj = k

(
Eji 0

0 −En+1−i,n+1−j

)
k

(
Eji 0

0 −E♯
ji

)
, i < j,

where Eij denotes the square matrix of order n with zero entries except for the (i, j)-th
which is equal to one.

The root system Φ = Φ(G̃, T ) is thus

Φ+ = {εi − εj, εi + εj, 1 ≤ i < j ≤ n} ∪ {2εi, 1 ≤ i ≤ n},

having chosen as Borel subgroup the one given by all upper triangular matrices in G̃ ⊂
GL2n. The corresponding basis ∆ consists of the following roots :

α1 = ε1 − ε2, . . . , αn−1 = εn−1 − εn, αn = 2εn.(3.1.2)

3.1.3.1. Reduced parabolic Pn. Still considering the group G̃ = Sp2n, denote as Pn the
maximal reduced parabolic subgroup associated to the long simple positive root αn: in a
more intrinsic way, this subgroup is the stabilizer of an isotropic vector subspace W ⊂ V

of dimension n, where G̃ = Sp(V ). In particular, W is the span of e1, . . . , en, where (ei)2ni=1

denotes the standard basis of k2n. Moreover, let us denote as P−
n the opposite parabolic

subgroup and as Ln their common Levi subgroup, so that

Pn = Stab(W ⊂ V )

P−
n = Stab(W ∗ ⊂ V )

Ln = Pn ∩ P−
n = GL(W ) ≃ GLn,

where W ⊕W ∗ = V . Let us also remark that L has root system Ψ given by

Ψ+ = {εi − εj, 1 ≤ i < j ≤ n},
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corresponding to a reductive group of type An−1 having as basis α1, . . . , αn−1. This can
be visualized in the following block decomposition :

Ln =

{(
A 0

0 −(A−1)♯

)
: A ∈ GL(W ) ≃ GLn

}
⊂ G̃.

First, the Lie algebra of Pn is

LiePn = LieB ⊕

(⊕
i<j

g−εi+εj

)
=
⊕
i<j

(
gεi−εj ⊕ g−εi+εj

)
⊕

(⊕
i<j

gεi+εj

)
⊕

(⊕
i

g2εi

)
.

For our purposes it is useful to study the Ln-action on the vector space

Vn ··= Lie G̃/LiePn =

(⊕
i<j

g−εi−εj

)
⊕

(⊕
i

g−2εi

)
.

Lemma 3.1.8. The Ln-module Vn is isomorphic to the dual of the standard representation
of GLn on Sym2(kn).

Proof. Indeed, the root spaces we are interested in have been computed in Re-
mark 3.1.7. Those equalities imply that a matrix in Vn is of the form(

0 0

ΩnX 0

)
, with X ∈ Sym2(kn),

thus the dual action of A ∈ GLn ≃ Ln can be computed as follows:

tA−1 ·X ≃

(
tA−1 0

0 −(tA)♯

)(
0 0

ΩnX 0

)(
tA 0

0 −(tA−1)♯

)
=

(
0 0

−ΩnAX
tA 0

)
≃ AX tA.

This gives the desired isomorphism between the two GLn-modules.
Let us remark that if we are working over a field of characteristic p = 2, the Ln-module
Vn contains a simple Ln-submodule, namely


0 0

c1

. .
.

cn 0

 , ci ∈ k


=

n⊕
i=1

g−2εi ,

which is isomorphic to the dual of the standard representation of GLn on kn, twisted once
by the Frobenius morphism. □

Proposition 3.1.9. Assume given a nonreduced parabolic subgroup P such that Pred = Pn.
Then LieP = Lie G̃ or LieP = LiePn + g<. If p = 3, then necessarily LieP = Lie G̃.

Proof. Let us assume that p = 2 and consider the nonzero vector space LieP/LiePn,
which is an Ln-submodule of Vn. The latter being isomorphic to Sym2(kn)∗ by Lemma 3.1.8,
we have that

(a) either LieP/LiePn contains all of the weight spaces g−2εi associated to long
negative roots,

(b) or it does not contain any of them.
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Let us start by (a) and assume g−2εi ⊂ LieP for all i. In order to prove that LieP =

Lie G̃, it is enough to show that for any i < j, the Chevalley vector X−εi−εj also belongs
to LieP . For this, let us consider roots

γ = εi − εj, satisfying Xγ ∈ LieLn ⊂ LieP,

δ = −2εi, satisfying Xδ ∈ LieP by our last assumption.

Thus, γ+ δ = −εi−εj is still a root while δ−γ = −3εi−εj is not: applying Lemma 3.1.5
gives

[Xεi−εj , X−2εi ] = ±X−εi−εj ∈ LieP

as wanted.
Let us place ourselves in the hypothesis of (b) and assume that no root subspace

associated to a negative long root is in LieP . Since by assumption P is nonreduced,
LiePn ⊊ LieP so there must be at least one short root of the form −εi − εj satisfying
X−εi−εj ∈ LieP . We will now prove that this implies all short roots −εl − εm for l < m

belong to LieP , hence showing LieP = LiePn + g<.
First, assume l ̸= i, j and consider roots

γ = −εi − εj, satisfying Xγ ∈ LieP by assumption,

δ = −εl + εi, satisfying Xδ ∈ LieLn ⊂ LieP.

In this case, γ + δ = −εl − εj is still a root while δ − γ = −εl + 2εi + εj is not: applying
Lemma 3.1.5 gives

[X−εi−εj , X−εl+εi ] = ±X−εl−εj ∈ LieP.

Now, let us fix any l < m satisfying l,m ̸= j and consider roots

γ = εj − εm, satisfying Xγ ∈ LieLn ⊂ LieP,

δ = −εl − εj, satisfying Xδ ∈ LieP by the last step.

Thus, γ + δ = −εl − εm is still a root while δ − γ = −εl − 2εj + εm is not: applying
Lemma 3.1.5 gives

[Xεj−εm , X−εl−εj ] = ±X−εl−εm ∈ LieP.

If we are working over a field of characteristic p = 3, the representation of GLn acting
on Sym2(kn) is already an irreducible one. Let us justify this claim in a representa-
tion theoretic setting: for a finite dimensional vector space V ′, Sym2(V ′) is the so-called
standard representation of GL(V ′), defined as H0(2ϖ1), where ϖ1 is the first funda-
mental weight (see [Jan, II.2.16]). In particular, it is irreducible (i.e. it coincides with
the simple GL(V ′)-module associated to 2ϖ1) in any characteristic but p = 2; this means
that in characteristic 3, Vn is an irreducible Ln-module. Hence the nonzero submodule
LieP/LiePn must coincide with all of Vn. Equivalently, LieP = Lie G̃ as wanted. □

Proof. (of Theorem 3.1.2 in type Cn when Pred = Pn)
Let G be simple adjoint of type Cn and X = G/P with a faithful G-action such that
Pred = Pαn and P is nonreduced. Define P̃ ⊂ G̃ = Sp2n as being the preimage of P in
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the simply connected cover: it is a nonreduced parabolic subgroup satisfying P̃red = Pn.
When p = 2, the above Proposition implies that

⟨Lie(γ∨(Gm)) : γ ∈ Φ< ⟩ ⊕ g< = LieNG̃ ⊂ Lie P̃ ,

hence by considering the image in the adjoint quotient we get NG ⊂ P , which is a
contradiction by Remark 3.1.4. If p = 3 then the above Proposition implies that Lie P̃ =

Lie G̃, hence the Frobenius kernel satisfies 1G̃ ⊂ P̃ , and its image in the adjoint quotient
is a normal subgroup of G contained in P , which gives again a contradiction. Therefore
in both cases P must be a smooth parabolic. □

3.1.3.2. Reduced parabolic Pm, m < n. Let us consider again a k-vector space V of
dimension 2n and denote as G̃ the group Sp2n = Sp(V ), of type Cn with n ≥ 2 and k

of characteristic p = 2 or 3. Its root system has been recalled in (3.1.2). Let us fix an
integer 1 ≤ m < n and consider - keeping the notation recalled at the beginning of this
subsection - the maximal reduced parabolic

Pm ··= Pαm ,

associated to the short simple root αm, which is the subgroup scheme stabilizing an
isotropic vector subspace of dimension m: let us denote the latter as W . Then, Pm also
stabilizes its orthogonal with respect to the symplectic form on V : denoting as P−

m the
opposite parabolic subgroup and as Lm their common Levi subgroup, one finds

Pm = Stab(W ⊂ W⊥ ⊂ V ) = Stab(W ⊂ W ⊕ U ⊂ V )

P−
m = Stab(W ∗ ⊂ (W ∗)⊥ ⊂ V ) = Stab(W ⊂ W ∗ ⊕ U ⊂ V )

Lm = Pm ∩ P−
m = GL(W )× Sp(U) ≃ GLm× Sp2n−2m .

In other words, the choice of such a Levi subgroup corresponds to fixing a vector subspace
U satisfying V = W ⊕ U ⊕W ∗. Let us also remark that L has root system Ψ given by

Ψ+ = {εi − εj, i < j ≤ m} ∪ {εi − εj, εi + εj, m < i < j} ∪ {2εj, m < j}.

This can be visualized in the following block decomposition :

Lm =


A 0 0

0 B 0

0 0 −(A−1)♯

 : A ∈ GL(W ), B ∈ Sp(U)

 ⊂ Pm =


∗ ∗ ∗
0 ∗ ∗
0 0 ∗




Proposition 3.1.10. Assume given a nonreduced parabolic subgroup P such that Pred =

Pm. Then LieP = Lie G̃ or LieP = LiePm+g<. If p = 3, then necessarily LieP = Lie G̃.

Proof. The Lie algebra of Pm contains all root subspaces except for those associated
to negative roots containing αm in their support, hence

Vm ··= Lie G̃/LiePm =

( ⊕
i<j≤m

g−εi−εj

)
⊕

(⊕
j≤m

g−2εj

) ⊕
i≤m<j

(
g−εi−εj ⊕ g−εi+εj

)
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More concretely, since Lm = Stab(W ) ∩ Stab(W ∗), the Levi subgroup acts on Vm as
follows. First, a matrix in ( ⊕

i<j≤m

g−εi−εj

)
⊕

(⊕
j≤m

g−2εj

)
(3.1.3)

is of the form  0 0 0

0 0 0

ΩmX 0 0


with X ∈ Sym2(W ), and the Lm-action on it is given by

(A,B) ·X ≃

A 0 0

0 B 0

0 0 −(A−1)♯


 0 0 0

0 0 0

X 0 0


A−1 0 0

0 B−1 0

0 0 −A♯


=

 0 0 0

0 0 0

−Ωm(
tA−1XA−1) 0 0

 ≃ tA−1XA−1,

hence this Lm-module is isomorphic to the dual of the standard representation of GLm
acting on Sym2(km).

Let us assume that the characteristic of the base field is p = 2: then the dual of
Sym2(W ) has an irreducible Lm-quotient given by ⊕j≤mg−2εj : this proves that, once such
a root subspace is contained in LieP for some j ≤ m, then all root subspaces associated
to long negative roots are. If p = 3, then Sym2(W )∨ is already irreducible itself, hence
either all subspaces in (3.1.3) are contained in LieP , or none of them is.
On the other hand, by Remark 3.1.7, an element of the quotient⊕

i≤m<j

(
g−εi−εj ⊕ g−εi+εj

)
=:M

is of the form  0 0 0

Y 0 0

0 Y ♭ 0

 , where Y ♭ ··= Ωm
tY

(
0 Ωn−m

Ωn−m 0

)

with Y ∈ Homk(W,U). This gives the following Lm-action on M

(A,B) · Y ≃

A 0 0

0 B 0

0 0 −(A−1)♯


 0 0 0

Y 0 0

0 Y ♭ 0


A−1 0 0

0 B−1 0

0 0 −A♯

 ≃ BY A−1,

because B being an element of Sp(U) implies

(A−1)♯Y ♭B−1 = Ωm
tA−1 tY tB

(
0 Ωn−m

−Ωn−m 0

)
= (BY A−1)♭.

Thus, M is isomorphic as an Lm-module to the representation

GLm× Sp2n−2m ↷ Homk(k
m, k2n−2m), (A,B) · Y = BY A−1
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The latter can be seen (as an Lm-module) as the outer product of the dual of the standard
action of GLm on km and of the standard action of Sp2n−2m on k2n−2m. Since both these
representations are irreducible, we can conclude that M is an irreducible Lm-module.
Now, let us go back to the parabolic subgroup P : being nonreduced, LieP/LiePm is
a nontrivial Lm-submodule of Vm. We already know that assuming such a quotient to
contain some g−2εj implies it contains all of them, thus we still need three claims to
conclude the proof:

(a) assuming LieP/LiePm to contain a subspace associated to a long negative root
implies it also contains a subspace associated to a short negative root;

(b) assuming it to contain a subspace associated to a short negative root implies it
contains all of them;

(c) when p = 3, assuming it to contain a subspace associated to a short negative
root implies it also contains a subspace associated to a long negative root.

For (a), assume g−2εj ⊂ LieP for some j ≤ m, then consider roots

γ = −2εj, satisfying Xγ ∈ LieP

δ = εj − εn, satisfying Xδ ∈ LieB ⊂ LieP.

Since γ + δ is a root and δ − γ is not, Lemma 3.1.5 yields

[X−2εj , Xεj−εn ] = ±X−εj−εn ∈ LieP.

Let us remark that (a) is automatically true when p = 3 due to the irreducibility of the
Lm-module Sym2(W ), without needing to consider any structure constant.
For (b), first assume some gη ⊂ M is also contained in LieP . Then M ⊂ LieP because
of its irreducibility as Lm-quotient of Vm. Moreover, fixing i < j ≤ m and applying
Lemma 3.1.5 to γ = −εi − εn and δ = −εj + εn, satisfying Xγ, Xδ ∈M , we obtain

[X−εi−εj , X−εj+εn ] = ±X−εi−εj ∈ LieP.

Thus (b) holds in this case. On the other hand, let us start by assuming that g−εi−εj ⊂
LieP for some i < j ≤ m. Then, applying Lemma 3.1.5 to γ = −εi−εj and δ = εj−εn ∈
Φ+ yields

[X−εi−εj , Xεj−εn ] = ±X−εi−εn ∈ LieP

so we conclude that some gν ⊂M is contained in LieP and conclude by the beginning of
the proof of (b).
For (c) it is enough to use (b) and the irreducibility of Sym2(W ) when p = 3. □

Proof. (of Theorem 3.1.2 in type Cn when Pred = Pm)
Let G be simple adjoint of type Cn and X = G/P with a faithful G-action such that
Pred = Pαm and P is nonreduced. Define P̃ ⊂ G̃ = Sp2n as being the preimage of P in
the simply connected cover: it is a nonreduced parabolic subgroup satisfying P̃red = Pm.
When p = 2, Proposition 3.1.10 implies that

⟨Lie(γ∨(Gm)) : γ ∈ Φ< ⟩ ⊕ g< = LieNG̃ ⊂ Lie P̃ ,

hence by considering the image in the adjoint quotient we get NG ⊂ P , which is a
contradiction by Remark 3.1.4. If p = 3 then Proposition 3.1.10 implies that Lie P̃ =

Lie G̃, hence the Frobenius kernel satisfies 1G̃ ⊂ P̃ , and its image in the adjoint quotient
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is a normal subgroup of G contained in P , which gives again a contradiction. Therefore
in both cases P must be a smooth parabolic. □

3.1.4. Type Bn. The aim of this subsection is to get the same results for the group of
type Bn, with the help of some of the computations involving structure constants, which
we have already done in case of type Cn.

3.1.4.1. Lie algebra of SO2n+1. Before continuing with our proof, let us compute what
LieG looks like, where G = SO2n+1 = SO(k2n+1) is defined as being relative to the
quadratic form

Q(x) = x2n +
n−1∑
i=0

xix2n−i,

in order to determine all its root spaces and be able to make explicit computations with
them. To do this, let us consider as maximal torus T ⊂ G the one given by diagonal
matrices of the form

t = diag(t1, . . . , tn, 1, t
−1
n , . . . , t−1

1 ) ∈ GL2n+1,(3.1.4)

while the Borel subgroup is given by upper triangular matrices in G. The Lie algebra is
given by all matrices of the form

M =



f0

A = (aij)
n
i,j=1

... B = (bij)
n
i,j=1

fn−1

g0 . . . gn−1 h gn+1 . . . g2n
fn+1

C = (cij)
n
i,j=1

... D = (dij)
n
i,j=1

f2n


∈ g2n+1

satisfying Q((1 + ϵM)x) = Q(x) for all x ∈ k2n+1, where ϵ2 = 0. Let us compute

Q((1 + ϵM)x) = (xn + ϵ(g0x0 + . . .+ gn−1xn−1 + hxn + gn+1xn+1 + . . . g2nx2n))
2

+
n−1∑
i=0

(
xi + ϵ

(
n−1∑
j=0

aijxj + fixn +
n−1∑
m=0

bi,n+1−mx2n−m

))

·

(
x2n−i + ϵ

(
n−1∑
r=0

cn+1−i,rxr + f2n−ixn +
n−1∑
l=0

dn+1−i,n+1−lx2n−l

))

= Q(x) + ϵ[2hx2n +
n−1∑
i=0

(f2n−i + 2gi)xixn +
n−1∑
i=0

(fi + 2g2n−i)xnx2n−i

+
n−1∑
i,m=0

bi,n+1−mx2n−mx2n−i +
n−1∑
i,r=0

cn+1−i,rxixr +
n−1∑
i,j=0

(aij + dn+1−j,n+1−i)xjx2n−i]

Asking the above quantity to be equal to Q(x) gives the following conditions:

2h = 0, fi = −2g2n−i, f2n−i = gi, D = −A♯, C = −C♯, B = −B♯,
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where we keep the notation (3.1.1). Moreover, the matrices ΩnB and ΩnC have zero
diagonal. Since the group considered is special orthogonal, the last condition on the
determinant implies that the trace of the matrix must be zero hence h = 0. The result is
thus

Lie SO2n+1 =


A −2Ωnw B
tv 0 tw

C −2Ωnv −A♯

 ∈ gl2n+1 : C = −C♯, B = −B♯, cn+1−i,i = bn+1−i,i = 0


Remark 3.1.11. Denoting, analogously to the type Cn, as εi ∈ X(T ) the character t 7! ti
for 1 ≤ i ≤ n, the root spaces are the following :

g−εi = k

 0 0 0
tei 0 0

0 −2en+1−i 0

 ,

gεi = k

0 −2ei 0

0 0 ten+1−i

0 0 0

 , 1 ≤ i ≤ n,

gεi+εj = k

0 0 (Eij + Eji)Ωn

0 0 0

0 0 0

 ,

g−εi−εj = k

 0 0 0

0 0 0

Ωn(Eij + Eji) 0 0

 , i < j,

gεi−εj = k

Eij 0 0

0 0 0

0 0 −E♯
ij

 ,

g−εi+εj = k

Eji 0 0

0 0 0

0 0 −E♯
ji

 , i < j,

where ei denotes the standard basis of kn and Eij the square matrix of order n with all
zero entries except for the (i, j)-th which is equal to one.

We thus verify that the root system Φ = Φ(G, T ) is given by

Φ+ = {εi − εj, εi + εj, 1 ≤ i < j ≤ n} ∪ {εi, 1 ≤ i ≤ n},

with basis ∆ consisting of the following roots :

α1 = ε1 − ε2, . . . , αn−1 = εn−1 − εn, αn = εn.(3.1.5)

3.1.4.2. Reduced parabolic Pn. Going back to our setting, let us consider the maximal
reduced parabolic subgroup Pn = Pαn associated to the short simple root αn, i.e. the
stabilizer of the isotropic vector subspace W = ke0 ⊕ · · · ⊕ ken−1 ⊂ V of dimension n,
where G = SO(V ) and (ei)

2n
i=0 denotes the standard basis of k2n+1. Since its Levi subgroup
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Ln = Pn ∩ P−
n stabilizes both W and its dual W ∗ = ken+1 ⊕ · · · ⊕ ke2n, we conclude that

it is of the form

Ln =


A 0 0

0 1 0

0 0 (A−1)♯

 : A ∈ GL(W ) ≃ GLn

 ⊂ Pn =


∗ ∗ ∗
0 ∗ ∗
0 0 ∗


 ⊂ G,

where V = W ⊕ ken ⊕W ∗. In particular, Ln is isomorphic to GLn, with root system Ψ

given by

Ψ+ = {εi − εj, 1 ≤ i < j ≤ n}.

Proposition 3.1.12. Assume given a nonreduced parabolic subgroup P such that Pred =

Pn. Then LieP = LieG or LieP = LiePn+ g<. If p = 3, then necessarily LieP = LieG.

Proof. First, by definition of Pn its Lie algebra is given by

LiePn = LieLn
⊕
i<j

gεi+εj
⊕
i

gεi ,

Since P is assumed to be nonreduced, LiePn ⊊ LieP hence :

(1) either there is some i such that g−εi ⊂ LieP ,
(2) or there is some i < j such that g−εi−εj ⊂ LieP .

Let us start by assuming (1) and fix such an index i. To show that all other g−εj are
then contained in LieP , let us consider the Ln-module

Vn ··= LieG/LiePn =

(⊕
i<j

g−εi−εj

)
⊕

(⊕
i

g−εi

)
.

By Remark 3.1.11, a matrix in
⊕n

i=1 g−εi is of the form 0 0 0
tv 0 0

0 −2Ωnv 0


for v ∈ kn, and the dual Ln-action on it is given by

tA−1 · v =

tA−1 0 0

0 1 0

0 0 tA♯


 0 0 0
tv 0 0

0 −2Ωnv 0


tA 0 0

0 1 0

0 0 (tA−1)♯

(3.1.6)

=

 0 0 0
t(Av) 0 0

0 −2ΩnAv 0

 ≃ Av(3.1.7)

In particular,
⊕n

i=1 g−εi is a simple Ln-submodule of Vn, isomorphic to the dual of the
standard representation of GLn on kn. Thus, if a root subspace associated to some −εi is
contained in LieP , all of the g−εj are too.
Let us assume instead that (2) holds: then, by repeating the same exact reasoning done
in case (b) of the preceding subsection, we show that LieP contains all weight spaces
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associated to long roots. This is due to the fact that the argument above only involves
roots of the form ±(εl ± εm). Moreover, assume i ̸= n and consider roots

γ = εn, satisfying Xγ ∈ LieLn ⊂ LieP

δ = −εi − εn, satisfying Xδ ∈ LieP by our last assumption.

Thus, γ + δ = −εi is still a root while δ − γ = −εi − 2εn is not: applying Lemma 3.1.5
gives

[Xεn , X−εi−εn ] = ±X−εi ∈ LieP.

In conclusion, when p = 2 we have shown that condition (2) implies LieP = LieG, while
assuming condition (1) to be true and (2) to be false implies LieP = LiePn + g<.
If p = 3 then the above reasoning still holds; the only remark that we need to add is that
g< ⊂ LieP implies that there is a long negative root ν satisfying gν ⊂ LieP/LiePn. For
this, let us consider roots

γ = −ε1 and δ = −εn, satisfying Xγ, Xδ ∈ LieP by our last assumption.

Thus, γ + δ = −ε1 − εn is still a root, γ − δ = −ε1 + εn is too, while γ − 2δ = −ε1 + 2εn
is not: applying Lemma 3.1.5 gives

[X−ε1 , X−εn ] = ±2X−ε1−εn , hence X−ε1−εn ∈ LieP.

Clearly, this last step of the proof would not work under the hypothesis p = 2. □

Proof. (of Theorem 3.1.2 in type Bn when Pred = Pn)
Let G be simple adjoint of type Bn and X = G/P with a faithful G-action such that
Pred = Pn = Pαn and P is nonreduced. When p = 2, the above Proposition, together
with the computation of Example 2.5.16, imply that

g< = LieNG ⊂ LieP,

hence we get NG ⊂ P , which is a contradiction by Remark 3.1.4. When p = 3, the above
Proposition implies that LieP = LieG, hence the Frobenius kernel satisfies 1G ⊂ P , which
gives again a contradiction. Therefore in both cases P must be a smooth parabolic. □

Remark 3.1.13. A small additional remark is needed in order to have a uniform state-
ment later on, since this is the only case where the group G is not simply connected: let
ψ : G̃ = Spin2n+1 −! G = SO2n+1 be the quotient morphism and consider a nonreduced
parabolic subgroup P ⊂ G̃ such that Pred = Pαn . The above reasoning implies that
ψ(P ) either contains NG - when such a subgroup is defined - or it contains the Frobenius
kernel 1G. In particular, P contains a normal noncentral subgroup of height one, namely
P ∩ ψ−1(NG) or P ∩ ψ−1(1G).

3.1.4.3. Reduced parabolic Pm, m < n. Let us consider again a k-vector space V of
dimension 2n+1 and denote as G the group SO2n+1 = SO(V ), of type Bn with n ≥ 2 and
k of characteristic p = 2 or 3. Moreover, let us consider the maximal reduced parabolic
subgroup

Pm ··= Pαm

associated to a long simple root αm for some m < n, keeping notations from (3.1.5). This
subgroup is the stabilizer of an isotropic vector subspace W = ke0 ⊕ · · · ⊕ kem−1 ⊂ V of
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dimension m, where (ei)
2n
i=0 denotes the standard basis of k2n+1. Since its Levi subgroup

Lm = Pm ∩ P−
m stabilizes both W and its dual W ∗ = ke2n−m+1 ⊕ · · · ⊕ ke2n, we conclude

that it is of the form

Lm =


A 0 0

0 B 0

0 0 (A−1)♯

 : A ∈ GL(W ), B ∈ SO(U)

 ⊂ Pm =


∗ ∗ ∗
0 ∗ ∗
0 0 ∗




where V = W ⊕ U ⊕W ∗. In particular, Lm ≃ GLm× SO2n−2m+1 with root system Ψ

given by

Ψ+ = {εi − εj, i < j ≤ m} ∪ {εi − εj, εi + εj, m < i < j} ∪ {εj, m < j}.

Proposition 3.1.14. Assume given a nonreduced parabolic subgroup P such that Pred =

Pm. Then LieP = LieG or LieP = LiePm+g<. If p = 3, then necessarily LieP = LieG.

Proof. The Lie algebra of Pm contains all root subspaces except for those associated
to negative roots containing αm in their support, hence

Vm ··= LieG/LiePm =

( ⊕
i<j≤m

g−εi−εj

)
⊕

(⊕
j≤m

g−εj

) ⊕
i≤m<j

(
g−εi−εj ⊕ g−εi+εj

)
The analogous computations as those in the proofs of Proposition 3.1.10 and (3.1.6) imply
that, as Lm-modules,

(1)
⊕

j≤m g−εj is isomorphic to the dual of the standard representation of GLn on
km, hence it is in particular a simple Lm-quotient of Vm ;

(2)
⊕

i≤m<j
(
g−εi−εj ⊕ g−εi+εj

)
is isomorphic to the following representation, which

gives a second irreducible Lm-quotient of Vm :

GLm× SO2n−2m+1 ↷ Homk(k
m, k2n−2m+1), (A,B) · Y = BY A−1.

Now, first assume g−εl ⊂ LieP for some l ≤ m. Then
⊕

j≤m g−εj is contained in LieP ,
since LieP/LiePm is a nontrivial Lm-submodule of Vm. Hence in this case g< ⊂ LieP .
The only other possibility is to start by assuming that gγ ⊂ LieP for some long negative
root γ containing αm in its support. Then one can repeat the same exact reasoning
of point (b) in the proof of Proposition 3.1.10, since it involves only roots of the form
±(εl ± εm) with l < m, to conclude that all root subspaces associated to long negative
roots are also contained in LieP . To conclude that, in this case, LieP = LieG, it suffices
to apply Lemma 3.1.5 to γ = −ε1 − εm and δ = εm, which gives

[X−ε1−εm , Xεm ] = ±X−ε1 ∈ LieP

as wanted.
Up to this point everything holds in both characteristic p = 2 and 3. To conclude it is
enough to show that, when p = 3, if g< ⊂ LieP then there is a long negative root ν
satisfying gν ⊂ LieP/LiePm. For this, let us consider roots

γ = −ε1 and δ = −εn, satisfying Xγ, Xδ ∈ LieP by our last assumption.
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Thus, γ + δ = −ε1 − εn is still a root, γ − δ = −ε1 + εn is too, while γ − 2δ = −ε1 + 2εn
is not: applying Lemma 3.1.5 gives

[X−ε1 , X−εn ] = ±2X−ε1−εn , hence X−ε1−εn ∈ LieP

as wanted. □

Proof. (of Theorem 3.1.2 in type Bn when Pred = Pm)
Let G be simple adjoint of type Bn and X = G/P with a faithful G-action such that
Pred = Pαm and P is nonreduced. When p = 2 the above Proposition, together with
Example 2.5.16, imply that

g< = LieNG ⊂ LieP,

hence we get NG ⊂ P , which is a contradiction by Remark 3.1.4. When p = 3, the above
Proposition implies that LieP = LieG, hence the Frobenius kernel satisfiesG1 ⊂ P , which
gives again a contradiction. Therefore in both cases P must be a smooth parabolic. □

Remark 3.1.15. As in Remark 3.1.13 above, we can conclude that if P ⊂ Spin2n+1

is a nonreduced parabolic subgroup satisfying Pred = Pαm , then it contains a normal
noncentral subgroup of height one.

3.1.5. Type F4. Let us consider a simple group G with root system F4 over an
algebraically closed field k of characteristic p = 2 or 3. Following notations from [Bou],
a basis ∆ of its root system Φ is given by

α1 = ε2 − ε3, α2 = ε3 − ε4, α3 = ε4, α4 =
1

2
(ε1 − ε2 − ε3 − ε4),

satisfying the relations

||α1||2 = ||α2||2 = 2, ||α3||2 = ||α4||2 = 1

and

(α1, α2) = (α2, α3) = −1, (α1, α3) = (α1, α4) = (α2, α4) = 0, (α3, α4) = −1

2
.(3.1.8)

Let us denote the associated maximal reduced parabolic subgroups as Pi ··= Pαi , for
i ∈ {1, 2, 3, 4}. Let us also recall that, when p = 2, NG ⊂ G is the unique subgroup of
height one such that

LieNG = Lieα∨
3 (Gm)⊕ Lieα∨

4 (Gm)⊕ g<,

where the short positive roots are

α3, α4, α2 + α3, α3 + α4, α1 + α2 + α3, α2 + 2α3 + α4,

α2 + α3 + α4, α1 + 2α2 + 3α3 + 2α4, α1 + α2 + α3 + α4,

α1 + α2 + 2α3 + α4, α1 + 2α2 + 2α3 + α4, α1 + 2α2 + 3α3 + α4.

Proposition 3.1.16. Assume given a nonreduced parabolic subgroup P such that Pred = Pi
for some i. Then LieP = LieG or LieP = LiePi + g<. If p = 3, then necessarily
LieP = LieG.
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Proof. Before starting a case-by-case analysis, let us denote as si, for i = 1, 2, 3, 4,
the reflection associated to the simple root αi, i.e.

si(γ) = γ − 2
(αi, γ)

(αi, αi)
αi, for all γ ∈ Φ.(3.1.9)

Case Pred = P1.

Let us assume that Pred = P1 and denote as L1 ··= P1 ∩ P−
1 the Levi subgroup: its root

system is of type C3 with basis consisting of short roots α4, α3 and the long root α2.
Moreover, L1 acts on the vector space

V1 ··= LieG/LieP1 =
⊕
γ∈Γ1

g−γ,

where Γ1 is the subset of all positive roots satisfying α1 ∈ Supp(γ). As usual, let us
consider the nonzero vector subspace W1 ··= LieP/LieP1, which is a L1-submodule of V1:
the set of its weights, which we denote Ω1, must be stable under the reflections s2, s3 and
s4. Our aim is to show that

either Ω1 = Γ1 ∩ Φ< or Ω1 = Γ1 :(3.1.10)

in other words, either W1 = ⊕γ∈Γ1∩Φ<g−γ or W1 = V1.
First, let us show that the Weyl group W (L1, T ) = ⟨s2, s3, s4⟩ acts transitively on

Γ1 ∩ Φ< = {α1 + α2 + α3, α1 + α2 + α3 + α4, α1 + α2 + 2α3 + α4, α1 + 2α2 + 2α3 + α4,

α1 + 2α2 + 3α3 + α4, α1 + 2α2 + 3α3 + 2α4} :

this implies that either Γ1 ∩Φ< ⊂ Ω1 or (Γ1 ∩Φ<)∩Ω1 = ∅. The following computations
follow directly from (3.1.8) and (3.1.9) :

s4(α1 + α2 + α3) = α1 + α2 + α3 + α4,

s3(α1 + α2 + α3 + α4) = α1 + α2 + 2α3 + α4,

s2(α1 + α2 + 2α3 + α4) = α1 + 2α2 + 2α3 + α4,

s3(α1 + 2α2 + 2α3 + α4) = α1 + 2α2 + 3α3 + α4,

s4(α1 + 2α2 + 3α3 + α4) = α1 + 2α2 + 3α3 + 2α4.

Next, let us show that W (L1, T ) acts transitively on

(Γ1 ∩ Φ>)\{α̃} = {α1, α1 + α2, α1 + α2 + 2α3, α1 + 2α2 + 2α3, α1 + α2 + 2α3 + 2α4,

α1 + 2α2 + 2α3 + 2α4, α1 + 2α2 + 4α3 + 2α4, α1 + 3α2 + 4α3 + 2α4},

where α̃ ··= 2α1+3α2+4α3+2α4 is the highest root. Let us remark that α̃ is indeed fixed
by the Weyl group of L1: this is due to the fact that it is the only root whose coefficient of
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α1 is 2 instead of 1. Again, the transitivity of the action is proved by direct computation:

s2(α1) = α1 + α2,

s3(α1 + α2) = α1 + α2 + 2α3,

s2(α1 + α2 + 2α3) = α1 + 2α2 + 2α3,

s4(α1 + 2α2 + 2α3) = α1 + 2α2 + 2α3 + 2α4,

s3(α1 + 2α2 + 2α3 + 2α4) = α1 + 2α2 + 4α3 + 2α4,

s1(α1 + 2α2 + 2α3 + 2α4) = α1 + α2 + 2α3 + 2α4,

s2(α1 + 2α2 + 4α3 + 2α4) = α1 + 3α2 + 4α3 + 2α4.

Thus, either (Γ1∩Φ>)\{α̃} ⊂ Ω1 or ((Γ1∩Φ>)\{α̃})∩Ω1 = ∅. Next, we show that α̃ ∈ Ω1

if and only if (Γ1 ∩ Φ>)\{α̃} ⊂ Ω1.

• Assume that g−α̃ ⊂ W1. Then applying Lemma 3.1.5 to γ = −α̃ and δ =

α1 + 2α2 + 2α3 gives

[X−α̃, Xα1+2α2+2α3 ] = ±X−α1−α2−2α3−2α4 ∈ LieP,

since γ + δ is a root while γ − δ = −3α1 − 5α2 − 6α3 − 2α4 is not. This implies
that the long root α1 + α2 + 2α3 + 2α4 belongs to Ω1.

• Assume that (Γ1 ∩ Φ>)\{α̃} ⊂ Ω1. In particular,

g−α1−2α2−2α3 ⊕ g−α1−α2−2α3−2α4 ⊂ LieP.

Thus, we can apply Lemma 3.1.5 to γ = −α1 − 2α2 − 2α3 and δ = −α1 − α2 −
2α3 − 2α4 to get

[X−α1−2α2−2α3 , X−α1−α2−2α3−2α4 ] = ±X−α̃ ∈ LieP,

since γ + δ is a root while γ − δ = −α2 + 2α4 is not.

The last step in order to prove (3.1.10) consists in showing that (Γ1 ∩ Φ>) ⊂ Ω1 implies
(Γ1 ∩ Φ<) ∩ Ω1 ̸= ∅ which, by the above reasoning, means Γ1 = Ω1. By our assumption,
the long root γ = −α1 − 2α2 − 2α3 − 2α4 satisfies gγ ⊂ LieP . Setting δ = −α3 and
applying Lemma 3.1.5 gives

[X−α1−2α2−2α3−2α4 , X−α3 ] = ±X−α1−2α2−3α3−2α4 ∈ LieP,

since γ + δ is a root while γ − δ = −α1 − 2α2 − α3 − 2α4 is not. This concludes the first
case.

Case Pred = P2.

Let us assume that Pred = P2 and fix the analogous notation as above: L2 ··= P2 ∩ P−
2

acts on
W2 ··= LieP/LieP2 =

⊕
γ∈Ω2

g−γ ⊂ V2 ··= LieG/LieP2 =
⊕
γ∈Γ2

g−γ

and its set of weights Ω2 must be stable under the action of the Weyl group W (L2, T ) =

⟨s1, s3, s4⟩. Our aim is to show that

either Ω2 = Γ2 ∩ Φ< or Ω2 = Γ2.(3.1.11)
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First, let us consider the partition of Γ2 as disjoint union of the following subsets :

Σ1 ··= {α1 + 3α2 + 4α3 + 2α4, α̃},
Σ2 ··= {α1 + 2α2 + 2α3, α1 + 2α2 + 2α3 + 2α4, α1 + 2α2 + 4α3 + 2α4},
Σ3 ··= {α1 + 2α2 + 2α3 + α4, α1 + 2α2 + 3α3 + α4, α1 + 2α2 + 3α3 + 2α4},
Σ4 ··= {α2 + α3, α1 + α2 + α3, α1 + α2 + α3 + α4, α1 + α2 + 2α3 + α4,

α2 + 2α3 + α4, α2 + α3 + α4},
Σ5 ··= {α2 + 2α3 + α4, α2 + 2α3, α1 + α2, α2, α1 + α2 + 2α3, α1 + α2 + 2α3 + 2α4}.

Notice that Σ1 ∪ Σ2 ∪ Σ5 = Γ2 ∩ Φ> and Σ3 ∪ Σ4 = Γ2 ∩ Φ<, so the root lengths
once again come into play. Moreover, Σ1, Σ2 ∪ Σ3 and Σ4 ∪ Σ5 are indeed stable under
the action of W (L2, T ), since their elements have coefficient 3, 2 and 1 respectively with
respect to the simple root α2. Now, the following computations prove that :

• Σ1 is stable by W (L2, T ) :

s1(α1 + 3α2 + 4α3 + 2α4) = α̃;

• Σ2 is stable by W (L2, T ) :

s4(α1 + 2α2 + 2α3) = α1 + 2α2 + 2α3 + 2α4,

s3(α1 + 2α2 + 2α3 + 2α4) = α1 + 2α2 + 4α3 + 2α4;

• Σ3 is stable by W (L2, T ):

s3(α1 + 2α2 + 2α3 + α4) = α1 + 2α2 + 3α3 + α4,

s4(α1 + 2α2 + 3α3 + 2α4) = α1 + 2α2 + 3α3 + 2α4;

• Σ4 is stable by W (L2, T ) :

s1(α2 + α3) = α1 + α2 + α3,

s4(α1 + α2 + α3) = α1 + α2 + α3 + α4,

s1(α1 + α2 + α3 + α4) = α2 + α3 + α4,

s3(α2 + α3 + α4) = α2 + 2α3 + α4,

s1(α2 + 2α3 + α4) = α1 + α2 + 2α3 + α4;

• Σ5 is stable by W (L2, T ) :

s4(α2 + 2α3 + 2α4) = α2 + 2α3,

s3(α2 + 2α3) = α1 + α2,

s1(α1 + α2) = α2 and s3(α1 + α2) = α1 + α2 + 2α3,

s4(α1 + α2 + 2α3) = α1 + α2 + 2α3 + 2α4.

Thus, for j = 1, . . . , 5, we have shown that Σj ∩ Ω2 ̸= ∅ implies that Σj ⊂ Ω2. Next, we
prove the following claims by using Lemma 3.1.5 on structure constants :

(a) Σ1 ⊂ Ω2 implies that Σ2 ⊂ Ω2,
(b) Σ2 ⊂ Ω2 implies that Σ5 ⊂ Ω2,
(c) Σ5 ⊂ Ω2 implies that Σ2 ⊂ Ω2,
(d) Σ2 ∪ Σ5 ⊂ Ω2 implies that Σ1 ⊂ Ω2,
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(e) Σ3 ⊂ Ω2 implies that Σ4 ⊂ Ω2,
(f) Σ4 ⊂ Ω2 implies that Σ3 ⊂ Ω2,
(g) Σ2 ⊂ Ω2 implies that Σ3 ⊂ Ω2.

The parabolic subgroup P being non-reduced by assumption, the set Ω2 is nonempty
hence, once these implications are proved, it must be either all of Γ2 or Σ3∪Σ4 = Γ2∩Φ<,
which proves (3.1.11).

(a): By assumption g−α1−3α2−4α3−2α4 ⊂ LieP . Set γ = −α1 − 3α2 − 4α3 − 2α4 and
δ = α2, then γ − δ = −α1 − 4α2 − 4α3 − 2α4 is not a root hence

[Xγ, Xδ] = ±X−α1−2α2−4α3−2α4 ∈ LieP

so α1 + 2α2 + 4α3 + 2α4 ∈ Σ2 ∩ Ω2.
(b): By assumption g−α1−2α2−4α3−2α4 ⊂ LieP . Set γ = −α1 − 2α2 − 4α3 − 2α4 and

δ = α2 + 2α3, then γ − δ = −α1 − 3α2 − 6α3 − 2α4 is not a root hence

[Xγ, Xδ] = ±X−α1−α2−2α3−2α4 ∈ LieP

so α1 + α2 + 2α3 + 2α4 ∈ Σ5 ∩ Ω2.
(c): By assumption g−α1−α2 ⊕g−α2−2α3 ⊂ LieP . Set γ = −α1−α2 and δ = −α2−2α3,

then γ − δ = −α1 − 2α3 is not a root hence

[Xγ, Xδ] = ±X−α1−2α2−2α3 ∈ LieP

so α1 + 2α2 + 2α3 ∈ Σ2 ∩ Ω2.
(d): By assumption g−α1−α2−2α3−2α4 ⊕ g−α1−2α2−2α3 ⊂ LieP . Set γ = −α1 − α2 −

2α3 − 2α4 and δ = −α1 − 2α2 − 2α3, then γ − δ = α2 − 2α4 is not a root hence

[Xγ, Xδ] = ±X−α̃ ∈ LieP

so α̃ ∈ Σ1 ∩ Ω2.
(e): By assumption g−α1−2α2−2α3−α4 ⊂ LieP . Set γ = −α1 − 2α2 − 2α3 − α4 and

δ = α2, then γ − δ = −α1 − 3α2 − 2α3 − α4 is not a root hence

[Xγ, Xδ] = ±X−α1−α2−2α3−α4 ∈ LieP

so α1 + α2 + 2α3 + α4 ∈ Σ4 ∩ Ω2.
(f): By assumption g−α1−α2−α3−α4 ⊕ g−α2−2α3−α4 ⊂ LieP . Set γ = −α1−α2−α3−α4

and δ = −α2 − 2α3 − α4, then γ − δ = −α1 + α3 is not a root hence

[Xγ, Xδ] = ±X−α1−2α2−3α3−2α4 ∈ LieP

so α1 + 2α2 + 3α3 + 2α4 ∈ Σ3 ∩ Ω2.
(g): By assumption g−α1−2α2−2α3−2α4 ⊂ LieP . Set γ = −α1 − 2α2 − 2α3 − 2α4 and

δ = −α3, then γ − δ = −α1 − 2α2 − α3 − 2α4 is not a root hence

[Xγ, Xδ] = ±X−α1−2α2−3α3−2α4 ∈ LieP

so α1 + 2α2 + 3α3 + 2α4 ∈ Σ3 ∩ Ω2.

Case Pred = P3.

Let us assume that Pred = P3 and fix the analogous notation as above: L3 ··= P3 ∩ P−
3
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acts on

W3 ··= LieP/LieP3 =
⊕
γ∈Ω3

g−γ ⊂ V3 ··= LieG/LieP3 =
⊕
γ∈Γ3

g−γ

and its set of weights Ω3 must be stable under the action of the Weyl group W (L3, T ) =

⟨s1, s2, s4⟩. Our aim is to show that

either Ω3 = Γ3 ∩ Φ< or Ω3 = Γ3.(3.1.12)

First, let us consider the partition of Γ3 as disjoint union of the following subsets :

Λ1 ··={α1 + 2α2 + 4α3 + 2α4, α1 + 3α2 + 4α3 + 2α4, α̃},
Λ2 ··={α1 + 2α2 + 2α3, α1 + 2α2 + 2α3 + 2α4, α1 + α2 + 2α3 + 2α4, α2 + 2α3 + 2α4,

α2 + 2α3, α1 + α2 + 2α3},
Λ3 ··={α1 + 2α2 + 3α3 + 2α4, α1 + 2α2 + 3α3 + α4},
Λ4 ··={α1 + 2α2 + 2α3 + α4, α1 + α2 + 2α3 + α4, α2 + 2α3 + α4},
Λ5 ··={α2 + α3 + α4, α1 + α2 + α3 + α4, α1 + α2 + α3, α2 + α3, α3, α3 + α4}.

Notice that Λ1 ∪Λ2 = Γ3 ∩Φ> and Λ3 ∪Λ4 ∪Λ5 = Γ3 ∩Φ<; moreover, as in the preceding
case, let us remark that Λ1, Λ3, Λ2 ∪ Λ4 and Λ5 are stable under W (L3, T ) because their
elements have as coefficient respectively 4, 3, 2 and 1 with respect to the simple root α3.
Now let us prove by direct computation that :

• Λ1 is stable by W (L3, T ) :

s2(α1 + 2α2 + 4α3 + 2α4) = α1 + 3α2 + 4α3 + 2α4,

s1(α1 + 3α2 + 4α3 + 2α4) = α̃;

• Λ2 is stable by W (L3, T ) :

s4(α1 + 2α2 + 2α3) = α1 + 2α2 + 2α3 + 2α4,

s2(α1 + 2α2 + 2α3 + 2α4) = α1 + α2 + 2α3 + 2α4,

s1(α1 + α2 + 2α3 + 2α4) = α2 + 2α3 + 2α4,

s4(α2 + 2α3 + 2α4) = α2 + 2α3,

s1(α2 + 2α3) = α1 + α2 + 2α3;

• Λ3 is stable by W (L3, T ) :

s4(α1 + 2α2 + 3α3 + 2α4) = α1 + 2α2 + 3α3 + α4;

• Λ4 is stable by W (L3, T ) :

s2(α1 + 2α2 + 2α3 + α4) = α1 + α2 + 2α3 + α4,

s1(α1 + α2 + 2α3 + α4) = α2 + 2α3 + α4;
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• Λ5 is stable by W (L3, T ) :

s1(α2 + α3 + α4) = α1 + α2 + α3 + α4,

s4(α1 + α2 + α3 + α4) = α1 + α2 + α3,

s1(α1 + α2 + α3) = α2 + α3,

s2(α2 + α3) = α3,

s4(α3) = α3 + α4.

Thus, for j = 1, . . . , 5, we have shown that Λj ∩ Ω3 ̸= ∅ implies that Λj ⊂ Ω3. Next, we
need to prove the following claims by using Lemma 3.1.5 on structure constants :

(a) Λ1 ⊂ Ω3 implies that Λ2 ⊂ Ω3,
(b) Λ2 ⊂ Ω3 implies that Λ1 ⊂ Ω3,
(c) Λ3 ⊂ Ω3 implies that Λ4 ⊂ Ω3,
(d) Λ4 ⊂ Ω3 implies that Λ5 ⊂ Ω3,
(e) Λ5 ⊂ Ω3 implies that Λ4 ⊂ Ω3,
(f) Λ4 ∪ Λ5 ⊂ Ω3 implies that Λ3 ⊂ Ω3,
(g) Λ1 ⊂ Ω3 implies that Λ3 ⊂ Ω3.

The parabolic subgroup P being non-reduced by assumption, the set Ω3 is nonempty
hence, once these implications are proved, it must be either all of Γ3 or Λ3 ∪ Λ4 ∪ Λ5 =

Γ3 ∩ Φ<, which proves (3.1.12).
(a): By assumption g−α̃ ⊂ LieP . Set γ = −α̃ and δ = α1 + 2α2 + 2α3, then γ − δ =

−3α1 + 5α2 + 6α3 + 2α4 is not a root hence

[Xγ, Xδ] = ±X−α1−α2−2α3−2α4 ∈ LieP

so α1 + α2 + 2α3 + 2α4 ∈ Λ2 ∩ Ω3.
(b): By assumption g−α1−2α2−2α3 ⊕g−α1−α2−2α3−2α4 ⊂ LieP . Set γ = −α1−2α2−2α3

and δ = −α1 − α2 − 2α3 − 2α4, then γ − δ = −α2 + 2α4 is not a root hence

[Xγ, Xδ] = ±X−α̃ ∈ LieP

so α̃ ∈ Λ1 ∩ Ω3.
(c): By assumption g−α1−2α2−3α3−2α4 ⊂ LieP . Set γ = −α1 − 2α2 − 3α3 − 2α4 and

δ = α3 + α4 ∈ Φ+, then γ − δ = −α1 − 2α2 − 4α3 − 3α4 is not a root hence

[Xγ, Xδ] = ±X−α1−2α2−2α3−α4 ∈ LieP

so α1 + 2α2 + 2α3 + α4 ∈ Λ4 ∩ Ω3.
(d): By assumption g−α2−2α3−α4 ⊂ LieP . Set γ = −α2 − 2α3 − α4 and δ = α3 ∈ Φ+,

then γ − δ = −α2 − 3α3 − α4 is not a root hence

[Xγ, Xδ] = ±X−α2−α3−α4 ∈ LieP

so α2 + α3 + α4 ∈ Λ5 ∩ Ω3.
(e): By assumption g−α3−α4 ⊕ g−α2−α3 ⊂ LieP . Set γ = −α3 − α4 and δ = −α2 − α3,

then γ − δ = −α2 + α4 is not a root hence

[Xγ, Xδ] = ±X−α2−2α3−α4 ∈ LieP

so α2 + 2α3 + α4 ∈ Λ4 ∩ Ω3.
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(f): By assumption g−α1−α2−α3−α4 ⊕ g−α2−2α3−α4 ⊂ LieP . Set γ = −α1−α2−α3−α4

and δ = −α2 − 2α3 − α4, then γ − δ = −α1 − α3 is not a root hence

[Xγ, Xδ] = ±X−α1−2α2−3α3−2α4 ∈ LieP

so α1 + 2α2 + 3α3 + 2α4 ∈ Λ3 ∩ Ω3.
(g): By assumption g−α1−2α2−4α3−2α4 ⊂ LieP . Set γ = −α1 − 2α2 − 4α3 − 2α4 and

δ = α3 ∈ Φ+, then γ − δ = −α1 − 2α2 − 5α3 − 2α4 is not a root hence

[Xγ, Xδ] = ±X−α1−2α2−3α3−2α4 ∈ LieP

so α1 − 2α2 + 3α3 + 2α4 ∈ Λ3 ∩ Ω3.

Case Pred = P4.

Let us assume that Pred = P4 and fix the analogous notation as above: the Levi subgroup
L4 ··= P4 ∩ P−

4 , which is of type B3, acts on

W4 ··= LieP/LieP4 =
⊕
γ∈Ω4

g−γ ⊂ V4 ··= LieG/LieP4 =
⊕
γ∈Γ4

g−γ

and its set of weights Ω4 must be stable under the action of the Weyl group W (L4, T ) =

⟨s1, s2, s3⟩. Our aim is to show that

either Ω4 = Γ4 ∩ Φ< or Ω4 = Γ4.(3.1.13)

Let β ··= α1 + 2α2 + 3α3 + 2α4 and consider, as in the first case of this proof, the action
of W (L4, T ) on

(Γ4 ∩ Φ<)\{β, α4} ··= {α3 + α4, α2 + α3 + α4, α1 + α2 + α3 + α4, α1 + α2 + 2α3 + α4,

α1 + 2α2 + 2α3 + α4, α1 + 2α2 + 3α3 + α4, α2 + 2α3 + α4},

which is transitive because

s2(α3 + α4) = α2 + α3 + α4

s1(α2 + α3 + α4) = α1 + α2 + α3 + α4,

s3(α1 + α2 + α3 + α4) = α1 + α2 + 2α3 + α4,

s2(α1 + α2 + 2α3 + α4) = α1 + 2α2 + 2α3 + α4,

s1(α1 + α2 + 2α3 + α4) = α2 + 2α3 + α4,

s3(α1 + 2α2 + 2α3 + α4) = α1 + 2α2 + 3α3 + α4,

and the same action on

Γ4 ∩ Φ> = {α2 + 2α3 + 2α4, α1 + α2 + 2α3 + 2α4, α1 + 2α2 + 2α3 + 2α4,

α1 + 2α2 + 4α3 + 2α4, α1 + 3α2 + 4α3 + 2α4, α̃},
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which is also transitive because

s1(α2 + 2α3 + 2α4) = α1 + α2 + 2α3 + 2α4,

s2(α1 + α2 + 2α3 + 2α4) = α1 + 2α2 + 2α3 + 2α4,

s3(α1 + 2α2 + 2α3 + 2α4) = α1 + 2α2 + 4α3 + 2α4,

s2(α1 + 2α2 + 4α3 + 2α4) = α1 + 3α2 + 4α3 + 2α4,

s1(α1 + 3α2 + 4α3 + 2α4) = α̃.

Next, we prove the following claims using Lemma 3.1.5 on structure constants :
(a) Γ4 ∩ Φ> ⊂ Ω4 implies that β ∈ Ω4,
(b) β ∈ Ω4 implies that (Γ4 ∩ Φ<)\{β, α4} ⊂ Ω4,
(c) (Γ4 ∩ Φ<)\{β, α4} ⊂ Ω4 implies that α4 ∈ Ω4,
(d) α4 ∈ Ω4 implies that (Γ4 ∩ Φ<)\{β, α4} ⊂ Ω4,
(e) (Γ4 ∩ Φ<)\{β} ⊂ Ω4 implies that β ⊂ Ω4.

The parabolic subgroup P being non-reduced by assumption, the set Ω4 is nonempty
hence, once these implications are proved, it must be either all of Γ4 or Γ4 ∩ Φ<, which
proves (3.1.13).

(a): By assumption g−α2−2α3−2α4 ⊂ LieP and g−α1−α2−α3 ∈ LieL4 ⊂ LieP . Set
γ = −α2 − 2α3 − 2α4 and δ = −α1 − α2 − α3, then γ − δ = α1 − α3 − 2α4 is not a root
hence

[Xγ, Xδ] = ±X−β ∈ LieP

so β ∈ Ω4.
(b): By assumption g−β ⊂ LieP . Set γ = −β and δ = α1 + α2 + α3 + α4 ∈ Φ+, then

γ − δ = −2α1 − 3α2 − 4α3 − 3α4 is not a root hence

[Xγ, Xδ] = ±X−α2−2α3−α4 ∈ LieP

so α2 + 2α3 + α4 ∈ ((Γ4 ∩ Φ<)\{β, α4}) ∩ Ω4.
(c): By assumption g−α3−α4 ⊂ LieP . Set γ = −α3 − α4 and δ = α3 ∈ Φ+, then

γ − δ = −2α3 − α4 is not a root hence

[Xγ, Xδ] = ±X−α4 ∈ LieP

so α4 ∈ Ω4.
(d): By assumption g−α4 ⊂ LieP and g−α3 ⊂ LieL4 ⊂ LieP . Set γ = −α4 and

δ = −α3, then γ − δ = α3 − α4 is not a root hence

[Xγ, Xδ] = ±X−α3−α4 ∈ LieP

so α3 + α4 ∈ ((Γ4 ∩ Φ<)\{β, α4}) ∩ Ω4.
(e): By assumption g−α4 ⊕ g−α1−2α2−3α3−α4 ⊂ LieP . Set γ = −α4 and δ = −α1 −

2α2 − 3α3 − α4, then γ − δ = α1 + 2α2 + 3α3 is not a root hence

[Xγ, Xδ] = ±X−β ∈ LieP

so β ∈ Ω4.

Conclusion: up to this point all computations hold in both characteristic p = 2 and
3. To conclude our proof when p = 3, one more step - which works simultaneously for all
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cases i = 1, 2, 3, 4 - is necessary in order to conclude that Ωi = Γi. That is, we want to show
that (Γi∩Φ<) ⊂ Ωi implies (Γi∩Φ>)∩Ωi ̸= ∅. By assumption, g−α1−2α2−3α3−2α4 ⊂ LieP .
Set γ = −α1 − 2α2 − 3α3 − 2α4 and δ = α3 ∈ Φ+, then γ + δ and γ − δ are still roots
while γ − 2δ = −α1 − 2α2 − 5α3 − 2α4 is not, hence

[Xγ, Xδ] = ±2X−α1−2α2−4α3−2α4 ∈ LieP hence X−α1−2α2−4α3−2α4 ∈ LieP,

so that −α1 − 2α2 − 4α3 − 2α4 ∈ (Γi ∩ Φ>) ∩ Ωi as wanted. □

Proof. (of Theorem 3.1.2 in type F4)
Let G be simple of type F4 and X = G/P with a faithful G-action such that Pred is
maximal and P is nonreduced. When p = 2, Proposition 3.1.16 implies that g< ⊂ LieP ,
hence we get LieNG ⊂ LieP and henceNG ⊂ P by the equivalence of categories, which is a
contradiction by Remark 3.1.4. When p = 3, the above Proposition implies that LieP =

LieG, hence the Frobenius kernel satisfies G1 ⊂ P , which gives again a contradiction.
Therefore in both cases P must be a reduced parabolic. □

3.2. The case of type G2

The last non-simply laced Dynkin diagram we have to consider is of a group G of type
G2. In this case, things behave as expected when the reduced parabolic subgroup is Pα2 ,
the one associated with the long simple root α2, or when the characteristic is p = 3: the
proof follows the same strategy as in types Bn, Cn and F4.

This still leaves out the case of a nonreduced parabolic subgroup satisfying Pred = Pα1

in characteristic 2, where α1 denotes the short simple root. Under such assumptions, we
find two maximal p-Lie subalgebras

h ··= LiePα1 ⊕ g−2α1−α2 and l ··= LiePα1 ⊕ g−α1 ⊕ g−α1−α2 ,

containing LiePα1 . Let H and L be the subgroups of G of height one with Lie algebra
respectively equal to g−2α1−α2 and g−α1 ⊕ g−α1−α2 , and define

Ph ··= ⟨H,Pα1⟩ and Pl ··= ⟨L, Pα1⟩.

This gives rise to two parabolic subgroups which have as reduced subgroup a maximal
one, but cannot be described as (kerφ)Pα1 for some isogeny φ with source G. We then
move on to investigate the corresponding homogeneous spaces, which we describe by using
the description of G as automorphism group of an octonion algebra.
The main result is the following, which completes the classification of Theorem 3.1.1.

Theorem 3.2.1. Let G be of type G2 in characteristic two and let P be a nonreduced
parabolic subgroup of G having Pα1 as reduced part.
Then one of the three following cases holds:

• P is of standard type and X ≃ G/Pα1 is isomorphic to a quadric Q in P6;
• P is obtained from Ph by pull back via an iterated Frobenius morphism and X ≃
G/Ph is isomorphic to P5;

• P is obtained from Pl by pull back via an iterated Frobenius morphism and X ≃
G/Pl is isomorphic to a hyperplane section of Sp6 /P

α3.
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Remark 3.2.2. In a later stage of the writing of this manuscript, the following useful
reference was pointed out to me: [Hog] classifies the restricted Lie subalgebras of LieG,
where G is a group of type G2 in characteristic p = 2.

Let us recall for reference the following result: see [Dem, Theorem 1], reformulated
here under the stronger hypothesis of k being an algebraically closed field. Concerning
the notion of automorphism group, see Section 2.3 above.

Theorem 3.2.3. Let H ′ be a semisimple adjoint group over k and Q′ a reduced para-
bolic subgroup of H ′. Then the natural homomorphism

H ′ −! H ··= Aut0H′/Q′

is an isomorphism in all but the three following cases:
(a) H ′ is of type Cn for some n ≥ 2 and Q′ = Pα1 is associated to the first short

simple root: in this case the automorphism group H is simple adjoint of type
A2n−1;

(b) H ′ is of type Bn for some n ≥ 2 and Q′ = Pαn is associated to the short simple
root: in this case the automorphism group H is simple adjoint of type Dn+1;

(c) H ′ is of type G2 and Q′ = Pα1: in this case the automorphism group H is simple
adjoint of type B3.

Let Q be the reduced parabolic subgroup of H such that H ··= Aut0H/Q. With a slight
change of notation compared to Demazure, we call the three pairs (H,Q) in the cases (a),
(b) and (c) of the Theorem exceptional, while (H ′, Q′) is called the associated pair to the
exceptional one. The result above is needed to conclude the type G2 case, as well as later
on, when dealing with higher Picard ranks.

3.2.1. What works as expected. Let us consider a group G with root system of
type G2 over a field k of characteristic p = 2 or 3. Following notations from [Bou], the
elements of Φ+ are

α1, α1 + α2, 2α1 + α2, 3α1 + α2, α2, 3α1 + 2α2.

In particular, let us consider as elements of the basis ∆ the short root α1 and the long
root α2; then denote P1 ··= Pα1 and P2 ··= Pα2 the associated maximal reduced parabolic
subgroups.

5π/6
α1−α1

α2

−α2−3α1 − α2 −2α1 − α2 −α1 − α2

−3α1 − 2α2
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Let us recall that, when p = 3, NG ⊂ G is in this case the unique subgroup of height
one such that

LieNG = Lieα∨
1 (Gm)⊕ gα1 ⊕ g−α1 ⊕ gα2+2α1 ⊕ g−α2−2α1 ⊕ gα1+α2 ⊕ g−α1−α2 .

Proposition 3.2.4. Assume given a nonreduced parabolic P such that Pred = P1 (with
p = 3) or Pred = P2 (with p = 2 or 3). Then LieP = LieG or LieP = LiePred + g<. If
p = 2, then necessarily LieP = LieG.

Remark 3.2.5. We can conclude that Theorem 3.1.2 holds in this case as follows: let G
be simple of type G2 and X = G/P with a faithful G-action such that Pred is maximal,
satisfies the hypothesis of Proposition 3.2.4, and such that P is nonreduced. The above
Proposition implies that

Lieα∨
1 (Gm)⊕ g< = LieNG ⊂ LieP,

hence we get NG ⊂ P , which is a contradiction by Remark 3.1.4. Therefore P must be a
smooth parabolic.

Proof. Case Pred = P1.

Let us assume that Pred = P1 and that the characteristic is p = 3. The Levi subgroup
L1 ··= P1 ∩ P−

1 has root system {±α2} and acts on the vector space

V1 ··= LieG/LieP1 = g−α1 ⊕ g−α1−α2 ⊕ g−2α1−α2 ⊕ g−3α1−α2 ⊕ g−3α1−2α2 .

Now, let us look at the nonzero vector subspace W1 ··= LieP/LieP1, which is in particular
an L1-submodule of V1. Thus, the set of its weights must be stable under the reflection
sα2 . This means, by a direct computation, that

g−3α1−2α2 ⊂ W1 ⇐⇒ g−3α1−α2 ⊂ W1,(3.2.1)

g−α1−α2 ⊂ W1 ⇐⇒ g−α1 ⊂ W1.(3.2.2)

Let us assume first that g−α1−α2 ⊕ g−α1 ⊂ W1. Then, applying Lemma 3.1.5 to
γ = −α1 − α2 and δ = −α1 gives

[X−α1−α2 , X−α1 ] = ±2X−2α1−α2 , hence X−2α1−α2 ∈ LieP,

since γ + δ and γ − δ are roots while γ − 2δ = α1 − α2 is not. Conversely, assuming
g−2α1−α2 ⊂ W1 and considering roots γ = −2α1 − α2 and δ = α1 yields

[X−2α1−α2 , Xα1 ] = ±2X−α1−α2 , hence X−α1−α2 ∈ LieP.

In other words, we have showed that whenever a root subspace associated to a short
negative root is contained in W1, the other two are too.
To conclude this first case, it is enough to show that

g−3α1−2α2 ⊕ g−3α1−α2 ⊂ W1 implies that g−2α1−α2 ⊂ W1.

This can be done by considering roots γ = −3α1 − 2α2 and δ = α1 + α2, for which γ + δ

is a root but γ − δ = −4α1 − 3α2 is not, hence

[X−3α1−2α2 , Xα1+α2 ] = ±X−2α1−α2 ∈ LieP.
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Case Pred = P2.

Moving on to the second case, let us assume that Pred = P2. The Levi subgroup L2 ··=
P2 ∩ P−

2 has root system {±α1} and acts on the vector space

V2 ··= LieG/LieP1 = g−α2 ⊕ g−α1−α2 ⊕ g−2α1−α2 ⊕ g−3α1−α2 ⊕ g−3α1−2α2 .

Now, let us look at the nonzero vector subspace W2 ··= LieP/LieP2, which is in particular
an L2-submodule of V2. Thus, the set of its weights must be stable under the reflection
sα1 . This means, by a direct computation, that

g−α1−α2 ⊂ W2 ⇐⇒ g−2α1−α2 ⊂ W2,(3.2.3)

g−3α1−α2 ⊂ W2 ⇐⇒ g−α1 ⊂ W2.(3.2.4)

The equivalence (3.2.3) already implies that once a root subspace associated to a short
negative root is contained in W2, the only other one is too.
If p = 3, to conclude it suffices to show that g−γ ⊂ W2 for some long root γ ∈ Φ+ implies
W2 = V2 i.e. LieP = LieG. First,

[X−3α1−2α2 , Xα2 ] = ±X−3α1−α2 ,

because (−3α1 − 2α2)− α2 is not a root, and conversely

[X−3α1−α2 , X−α2 ] = ±X−3α1−2α2 ,

because (−3α1 − α2)− (−α2) is not a root. Finally,

[X−3α1−α2 , Xα1 ] = ±X−2α1−α2 ,

because (−3α1 − α2)− α1 is not a root. This proves that in this case W2 = V2.
If p = 2, one more step must be added: assume that g−2α1−α2 ⊕ g−α1−α2 ⊂ W2, then

[X−2α1−α2 , X−α1 ] = ±X−3α1−α2 , hence X−3α1−α2 ∈ LieP,

because (−2α1−α2)+α1, (−2α1−α2)+2α1 are roots, while (−2α1−α2)+3α1 is not. This
last remark, together with the above computations shows that when p = 2 necessarily
LieP = LieG. □

3.2.2. What does not. The only case yet to consider is the following: the charac-
teristic is p = 2, the group G is of type G2 and P is a nonreduced parabolic subgroup
satisfying Pred = Pα1 , the reduced parabolic associated to the short simple root, whose
Levi subgroup has root system {±α2}. Let us place ourselves in this setting: by repeating
the same reasoning as above, we can obtain only a weaker statement.

Lemma 3.2.6. Assume that one of the two root subspaces associated to −3α1 − 2α2 and
−3α1 − α2 is contained in LieP . Then LieP = LieG.

Proof. By (3.2.1), we have that both root subspaces are in LieP . Then considering
roots γ = −3α1 − 2α2, δ = α1 + α2 and δ′ = 2α1 + α2 yields

[Xγ, Xδ] = ±X−2α1−α2 ∈ LieP and [Xγ, Xδ′ ] = ±X−α1−α2 ∈ LieP,

because γ − δ and γ − δ′ are not roots. This means that if one long root is added then
we have to add everything else. □
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The same reasoning applied to short roots fails, due to the vanishing of structure
constants in characteristic 2. More precisely, we can identify two Lie subalgebras strictly
containing LiePα1 , which cannot be Lie ideals since LieG is a simple p-Lie algebra (see
Lemma 2.5.9) as follows: define the following vector subspaces

h ··= LiePα1 ⊕ g−2α1−α2 = LieB ⊕ g−α2 ⊕ g−2α1−α2 ;(3.2.5)

l ··= LiePα1 ⊕ g−α1 ⊕ g−α1−α2 = LieB ⊕ g−α2 ⊕ g−α1 ⊕ g−α1−α2 .(3.2.6)

Lemma 3.2.7. With the above notation, h and l are two p-Lie subalgebras of LieG.

Proof. Let {Xγ : γ ∈ Φ, Hα1 , Hα2} be a Chevalley basis of LieG. First, using
Lemma 3.1.5 we can calculate a few structure constants which are then useful in the
rest of the proof:

ad(X−2α1−α2) ad(X−α1) ad(X−α1−α2) ad(Xα1) ad(X2α1+α2)

Xα1 0 ∈ LieT X−α2 0 X3α1+α2

X3α1+α2 Xα1 X2α1+α2 0 0 0

X2α1+α2 ∈ LieT 0 0 X3α1+α2 0

X3α1+2α2 Xα1+α2 0 X2α1+α2 0 0

Xα1+α2 0 Xα2 ∈ LieT 0 X3α1+2α2

Xα2 0 0 X−α1 Xα1+α2 0

X−α1 X−3α1−α2 0 0 ∈ LieT 0

X−3α1−α2 0 0 0 X−2α1−α2 X−α1

X−2α1−α2 0 X−3α1−α2 X−3α1−2α2 0 ∈ LieT

X−3α1−2α2 0 0 0 0 X−α1−α2

X−α1−α2 X−3α1−2α2 0 0 X−α2 0

X−α2 0 X−α1−α2 0 0 0

Let us verify that h is a Lie subalgebra. Since we know that LiePα1 is one, it is enough
to show that [g−2α1−α2 ,LieP

α1 ] ⊂ h. Lemma 3.1.5 implies that

[g−2α1−α2 ,LieT ] = [X−2α1−α2 ,LieT ] ⊂ g−2α1−α2 ⊂ h.

Moreover, the first column of the above table shows that

[g−2α1−α2 , gγ] = k[X−2α1−α2 , Xγ] ⊂ h,

for all roots γ whose root subspace is contained in LiePα1 .
Analogously, let us prove that l is a Lie subalgebra: for this, it is enough to show that

[g−α1 ,LieP
α1 ], [g−α1−α2 ,LieP

α1 ], [g−α1 , g−α1−α2 ] ⊂ l.

First, Lemma 3.1.5 implies that

[g−α1 ,LieT ] = [X−α1 ,LieT ] ⊂ g−α1 ⊂ l ;

[g−α1−α2 ,LieT ] = [X−α1−α2 ,LieT ] ⊂ g−α1−α2 ⊂ l.

Moreover, the second and third column in the above table show that

[g−α1 , gγ] = k[X−α1 , Xγ] and [g−α1−α2 , gγ] = k[X−α1−α2 , Xγ]
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are both subspaces of l, for all roots γ whose root subspace is contained in LiePα1 .
To conclude there is still left to show that h and l are stable by the p-mapping (recall
that by assumption p = 2), knowing that LiePα1 is. In other words, setting Yγ equal
to the image of Xγ by the p-mapping, we want to prove that Y−2α1−α2 ∈ h and that
Y−α1 , Y−α1−α2 ∈ l.
To do this, let

Y−2α1−α2 = H +
∑
δ∈Φ

aδXδ, for some aδ ∈ k, H ∈ LieT.

It is enough to show that a−α1 = a−3α1−α2 = a−3α1−2α2 = a−α1−α2 = 0. By the prop-
erties of the p-mapping, we have that ad(Yγ) = ad2(Xγ) for any root γ. Using that
[X−2α1−α2 , Xα1 ] vanishes (see table), we have:

0 =ad(X−2α1−α2)([X−2α1−α2 , Xα1 ]) = ad2(X−2α1−α2)(Xα1)

= ad(Y−2α1−α2)(Xα1) = [H,Xα1 ] +
∑
δ∈Φ

aδ[Xδ, Xα1 ].

Expanding all brackets using the fourth column of the above table gives that, for some
a ∈ k,

0 = aXα1 + a2α1−α2X3α1+α2 + aα2Xα1+α2 + a−α1Hα1 + a−3α1−α2X−2α1−α2 + a−α1−α2X−α2 ,

which implies in particular a−α1 = a−3α1−α2 = a−α1−α2 = 0. Moreover, [X−2α1−α2 , Xα1 ]

also vanishes, hence we have

0 =ad(X−2α1−α2)([X−2α1−α2 , Xα1+α2 ]) = ad2(X−2α1−α2)(Xα1+α2)

= ad(Y−2α1−α2)(Xα1+α2) = [H,Xα1+α2 ] +
∑
δ∈Φ

aδ[Xδ, Xα1+α2 ].

Writing this with respect to the Chevalley basis gives

a−3α1−2α2 [X−3α1−2α2 , Xα1+α2 ] = a−3α1−2α2X−2α1−α2

as the only term in X−2α1−α2 , meaning that the coefficient a−3α1−2α2 also vanishes, as
wanted: thus we can conclude that h is a p-Lie subalgebra of LieG.
Analogously, let

Y−α1 = H ′ +
∑
δ∈Φ

bδXδ, for some bδ ∈ k,H ′ ∈ LieT,

and as before we aim to show that b−3α1−α2 = b−2α1−α2 = b−3α1−2α2 = 0. Using that
[X−α1 , X2α1+α2 ] vanishes (see table), we have

0 =ad(X−α1)([X−α1 , X2α1+α2 ]) = ad2(X−α1)([X−α1 , X2α1+α2 ])

= ad(Y−α1)(X2α1+α2) = [H ′, X2α1+α2 ] +
∑
δ∈Φ

bδ[Xδ, X2α1+α2 ].

Expanding all brackets using the last column of the above table gives that, for some b ∈ k

and some H ′′ ∈ LieT ,

0 = bX2α1+α2 + bα1X3α1+α2 + bα1+α2X3α1+2α2 + b−3α1−α2X−α1 + b−2α1−α2H
′′

+ b−3α1−2α2X−α1−α2 .
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In particular, this proves that b−3α1−α2 = b−3α1−2α2 = 0. Moreover, [X−α1 , X−α1−α2 ] also
vanishes, hence we have

0 =ad(X−α1)([X−α1 , X−α1−α2 ]) = ad2(X−α1)([X−α1 , X−α1−α2 ])

= ad(Y−α1)(X−α1−α2) = [H ′, X−α1−α2 ] +
∑
δ∈Φ

bδ[Xδ, X−α1−α2 ].

Expanding this with respect to the Chevalley basis gives b−2α1−α2 [X−2α1−α2 , X−α1−α2 ] =

b−2α1−α2X−3α1−2α2X−3α1−2α2 as the only term in X−3α1−2α2 , meaning that the coefficient
b−2α1−α2 also vanishes: this proves that Y−α1 ∈ l.
To prove that Y−α1−α2 is also in l, an analogous computation, symmetric with respect to
the reflection sα2 , can be done. Finally, we can conclude that l is a p-Lie subalgebra. □

Corollary 3.2.8. The p-Lie subalgebras of LieG containing strictly LiePα1 are exactly
h and l.

Proof. Let us consider a p-Lie subalgebra LiePα1 ⊊ s ⊂ LieG, meaning that there
is some positive root γ ̸= α1 such that g−γ is contained in s. By Lemma 3.2.6, if γ is
long then s = LieG, so we can assume γ to be short. To do this, let us remark that by
Lemma 3.1.5 we have

[X−α1 , X−2α1−α2 ] = X−3α1−α2 ,(3.2.7)

because −α1−(−2α1−α2)) and −α1−2(−2α1−α2)) are roots while −α1−3(−2α1−α2))

is not, hence the structure constant is 3 = 1. If γ = α1, by symmetry with respect to
the Weyl group {±sα2} of the Levi factor of Pα1 we have that g−α1−α2 is also contained
in s, hence either s = l or it also contains g−2α1−α2 . The equality (3.2.7) together with
Lemma 3.2.6 then imply s = LieG. The same reasoning applies when starting by γ =

−α1 − α2. On the other hand, starting by γ = 2α1 + α2 implies that either s = h, or it
contains also g−α1 ⊕ g−α1−α2 , from which we conclude again - by (3.2.7) and Lemma 3.2.6
- that s = LieG. □

Definition 3.2.9. Let us fix the following notation for the rest of this Section:

(1) H ··= (U−2α1−α2)1 is the subgroup of height one such that LieH = g−2α1−α2 , i.e.
h = LiePα1 ⊕ LieH ;

(2) L ··= (U−α1)1 · (U−α1−α2)1 is the subgroup of height one such that LieL = g−α1 ⊕
g−α1−α2 , i.e. l = LiePα1 ⊕ LieL ;

(3) Ph the parabolic subgroup generated by Pα1 and H;
(4) Pl the parabolic subgroup generated by Pα1 and L.

Let us notice that g−α1 and g−α1−α2 commute, so that L is the direct product of the
Frobenius kernels defining it.

Remark 3.2.10. The two parabolic subgroups Ph and Pl are exotic in the sense that they
cannot be of the form (kerφ)Pα for some isogeny φ, since when p = 2 the only noncentral
isogenies in type G2 are iterated Frobenius homomorphisms (see Proposition 2.5.12).

In the following part we investigate what the homogeneous spaces having as stabilizer
respectively Ph and Pl are isomorphic to, as varieties.
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3.2.2.1. Parabolic Ph. Let us denote as Q the smooth quadric in P6, realized as the
homogeneous space

SO7 /P
α1 .

Proposition 3.2.11. Let G be simple of type G2 in characteristic p = 2 and Ph the
parabolic subgroup of Definition 3.2.9. Then the quotient morphism G/Pα1 −! G/Ph is
the natural projection

P6 ⊃ Q ··= {x23+x2x4+x1x5+x0x6 = 0} ! P5, [x0 : . . . : x6] 7! [x0 : x1 : x2 : x4 : x5 : x6].

In particular, the homogeneous space G/Ph is isomorphic as a variety to P5 = PSp6 /P
α1.

In order to construct this morphism, we will see the group G as the automorphism
group of an octonion algebra - see the Appendix for more details - which is

O = {(u, v) : u, v are 2× 2 matrices} ,

with basis (e11, e12, e21, e22, f11, f12, f21, f22), recalled in Section 6.1, with unit e = (1, 0) =

e11 + e22, and which is equipped with a norm

q(u, v) = det(u) + det(v).

An embedding of the group G2 into SO7 can be seen as follows: let us consider its action
on the vector space

V ··= e⊥ = {(u, v) : det(1 + u) + det(u) = 1}

as in (6.1.2). This gives an embedding G2 ⊂ SO7 = SO(V ), which is independent of
the characteristic. Since in our setting p = 2, we moreover have that have that e ∈ V

hence the group G also acts on the quotient W ··= V/ke, which has dimension 6. This is
exactly due to the existence of the very special isogeny from Spin7 to Sp6, which factorises
through SO7 and which has been described in Example 2.5.16 in terms of linear algebra.
Thus, we get an embedding

G2 ⊂ Sp6 = Sp(W ).

By (6.1.4) in the Appendix, a maximal torus T of G - with respect to the basis

(f12, f11, e12, e21, f22, f21)

of W - is given by

Gm
2 ∋ (a, b) 7−! diag(a, a−1b−1, a2b, a−2b−1, ab, a−1) = t ∈ T ⊂ GL6 .

Let us recall that the basis of simple roots we fix is α1(t) ··= a and α2(t) ··= b, hence V
has the following decomposition in weight spaces :

V0 = ke, Vα1 = kf12, V−α1 = kf21, Vα1+α2 = kf22,

V−α1−α2 = kf11, V2α1+α2 = ke12, V−2α1−α2 = ke21.

This way, T can be identified with the maximal torus in [Hei, page 13]: in Heinloth’s
description of the embedding G ⊂ Sp6 in characteristic 2, given by the action on

W = V/ke = Wα1 ⊕W−α1−α2 ⊕W2α1+α2 ⊕W−2α1−α2 ⊕Wα1+α2 ⊕W−α1 ,
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the group G is generated by the two following copies of GL2 :

θ1 : A 7−!

A A(1) detA−1

A

 and θ2 : B 7−!


detB−1

B

B

detB

 ,

where A(1) denotes the Frobenius twist applied to A.

Lemma 3.2.12. When considering the action of G on P(V ) = P6, we have

StabG([V2α1+α2 ]) = Pα1 .

Proof. First, let us prove that Pα1 , which is generated by T , U±α2 and Uα1 , fixes
V2α1+α2 = ke12. Clearly the torus does; moreover, the computation of the respective
actions of u−α2(λ), uα2(λ) and uα1(λ) on V , done in Chapter 6, Remark 6.2.1, shows that
all three fix

[e12] = [0 : 0 : 1 : 0 : 0 : 0 : 0].

This proves that Pα1 ⊂ S ··= StabG([V2α1+α2 ]). To prove the reverse inclusion, let us
remark that no nontrivial subgroup of U−α1 and of U−2α1−α2 fixes [e12]: again by Chapter 6,
Remark 6.2.1, we have

u−α1(λ) · e12 = e12 + λf22 and u−2α1−α2(λ) · e12 = e12 + λ2e21,

thus U−α1 ∩ S = U−2α1−α2 ∩ S = 1.
At this point, we know that LiePα1 ⊂ S, hence by Corollary 3.2.8, LieS is either equal
to LiePα1 , to h, to l or to LieG. However, Uα1 ∩ S = 1 means g−α1 is not contained in
LieS, hence the latter cannot be equal to l nor to LieG. Analogously, U−2α1−α2 ∩ S = 1

means g2α1+α2 is not contained in LieS, hence LieS cannot be equal to h. This means
that LieS = LiePα1 hence S = Pα1 as wanted. □

We can now conclude part of the proof of Proposition 3.2.11. First, let us recall
that we are working with the basis (f12, f11, e12, e, e21, f22, f21) on V , giving homogeneous
coordinates [x0 : · · · : x6] on P(V ): the norm q hence becomes

q(x) = x23 + x2x4 + x1x5 + x0x6,

and its zero locus in P6 is the quadric Q of the Proposition. The point [e12] belongs
to Q while [e] does not, and the quotient W = V/ke corresponds to the projection
P6\{[e]} −! P5. Moreover, we have

G/Pα1 = G/ StabG([V2α1+α2 ]) = G · [e12] Q

Since both are smooth irreducible projective of dimension 5, they coincide. In particular,

Aut0G/Pα1 = Aut0Q = SO(V ) = SO7

is of type B3, as stated in Theorem 3.2.3.
What is left to prove is that G/Ph ≃ P5: to do this, we look at the action of G on W .

Lemma 3.2.13. When considering the action of G on P(W ) = P5, we have

StabG([W2α1+α2 ]) = Ph.
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Proof. Let S ′ be the stabilizer. From the above Lemma we know that Pα1 fixes
[V2α1+α2 ], hence it also fixes [W2α1+α2 ]. Moreover, by Chapter 6, Remark 6.2.1 we have

u−2α1−α2(λ) · [e12] = [0 : 0 : 1 : λ2 : 0 : 0] and u−α1(λ) · [e12] = [0 : 0 : 1 : 0 : λ : 0],

meaning that U−α1 ∩ S ′ = 1, while

H = u−2α1−α2(αp) = U−2α1−α2 ∩ S ′.

In particular, this yields that on one side, Ph ⊂ S ′ hence h ⊂ LieS, and on the other side,
g−α1 is not contained in LieS ′. In particular by Corollary 3.2.8 LieS ′ = h and the only
positive root γ satisfying 1 ⊊ U−γ ∩ S ′ ⊊ U−γ is −2α1 − α2, hence by [Wen, Proposition
8]

U−
S′ =

∏
γ∈Φ+ : U−γ ̸⊂S′

(U−γ ∩ S ′) = U−2α1−α2 ∩ S ′ = H,

where U−
P - following Wenzel’s notation - denotes the infinitesimal unipotent subgroup

given by the intersection of a parabolic subgroup P with the unipotent radical of the
opposite of Pred with respect to the Borel B, as recalled in (2.3.1). Thus, we can conclude
that S ′ = U−

S′ · S ′
red = H · Pα1 , and the latter must coincide with Ph by definition. □

Corollary 3.2.14. We have Ph = H · Pα1. More precisely,

U−
Ph

= Ph ∩Ru((P
α1)−) = Ph ∩ U−2α1−α2 = H.

Hence, LiePh = h.

Now, let us consider the embedding

G/Ph = G/ StabG([W2α1+α2 ]) = G · [e12] P(W ) = P5 .

As before, since both are smooth irreducible projective of dimension 5, they coincide.
This gives as quotient map

G/Pα1 = Q −! G/(H · Pα1) = P5(3.2.8)

the projection from [e], which has degree 2 equal to the order of H.

3.2.3. Parabolic Pl. Let us consider the homogeneous space G/Pl and show that one
can realize it in a concrete way using octonions. More precisely, considering the action
of G2 ⊂ Sp6 on W = V/ke, the parabolic subgroup Pl is the stabilizer of a 3-dimensional
isotropic vector subspace of W , spanned by the root spaces associated to the short positive
roots (see Proposition 3.2.18). To do this, let us consider

η ··= f12 ∧ f22 ∧ e12

as element of P(Λ3V ) and η the element of P(Λ3W ) given by the images in W of the
three vectors.

Lemma 3.2.15. Let G be simple of type G2 in characteristic p = 2 and Pl the parabolic
subgroup of Definition 3.2.9. When considering the action of G on P(Λ3V ) and P(Λ3W )

respectively, we have

StabG(η) = Pα1 and StabG(η) = Pl.
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Proof. Let us denote as S and S ′′ the above stabilizers.
First, let us prove that Pα1 , which is generated by T , U±α2 and Uα1 , fixes the subspace
kf12 ⊕ kf22 ⊕ ke12 ⊂ V , whose elements are of the form (w0, 0, w2, 0, 0, w5, 0). The com-
putations of Chapter 6, Remark 6.2.1 give us the following :

uα2(λ) · (w0, 0, w2, 0, 0, w5, 0) = (w0, 0, w2, 0, 0, λw0 + w5, 0),

u−α2(λ) · (w0, 0, w2, 0, 0, w5, 0) = (w0 + λw5, 0, w2, 0, 0, w5, 0)

uα1(λ) · (w0, 0, w2, 0, 0, w5, 0) = (w0, 0, w2 + λw5, 0, 0, w5, 0),

meaning that Pα1 ⊂ S. Moreover, considering the action of the root subgroups associated
to −α1, −2α1 − α2 and −α1 − α2, we have the following :

u−α1(λ) · (w0, 0, w2, 0, 0, w5, 0) = (w0, 0, w2, λw0, 0, λw2 + w5, λ
2w0),

u−2α1−α2(λ) · (w0, 0, w2, 0, 0, w5, 0) = (w0, λw0, w2, λw2, λ
2w2, w5, λw5),

u−α1−α2(λ) · (w0, 0, w2, 0, 0, w5, 0) = (w0 + λw2, λ
2w5, w2, λw5, 0, w5, 0).

These computations imply that LieS has trivial intersection with the root subspaces
associated to short negative roots. Thus by Corollary 3.2.8 LieS = LiePα1 , which allows
us to conclude that S = Pα1 .
Next, let us consider the action of G on the quotient W = V/ke. The second computation
just above yields that the intersection U−2α2−α1 ∩ S ′′ is trivial, hence g−2α1−α2 is not
contained in LieS ′′ and the latter cannot be equal to LieG nor to h. The other two
equalities imply that U−α1 ∩ S ′′ = u−α1(αp) and U−α1−α2 ∩ S ′′ = u−α1−α2(αp), meaning
that LieS ′′ = l. In particular, the positive roots γ satisfying 1 ⊊ U−γ ∩ S ′ ⊊ U−γ are α1

and α1 + α2 : by [Wen], we have

U−
S′′ =

∏
γ∈Φ+ : U−γ ̸⊂S′′

(U−γ ∩ S ′′) = (U−α1−α2 ∩ S ′′) · (U−α1 ∩ S ′′) = L.

Thus, we can conclude that S ′′ = U−
S′′ · S ′′

red = L · Pα1 , and the latter must coincide with
Pl by definition. □

Corollary 3.2.16. We have Pl = L · Pα1. More precisely,

U−
Pl
= Pl ∩Ru((P

α1)−) = (Pl ∩ U−α1−α2) · (Pl ∩ U−α1) = L.

Hence, LiePl = l.

Next, let us realise the variety Q as a hyperplane section of the SO7-homogeneous
variety of isotropic 3-dimensional subspaces of V : this will help us describe X ··= G/Pl

geometrically. Recall that - keeping the notation from Proposition 3.1.12 - the reduced
parabolic subgroup associated to the short root α3 in type B3, which is denoted P3 =

Pα3 ⊂ SO7, is the stabilizer of an isotropic subspace of dimension 3, hence

Pα1 = StabG(η) = G ∩ P3 = G ∩ StabSO7(η).

This gives the following embedding, where we denote as L the unique (very) ample
generator of the Picard group of Y .

Q = G/Pα1 ↪−! Y ··= SO7 /P3 ↪−! P(H0(Y,L)∨)(3.2.9)
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Lemma 3.2.17. The variety Q is a hyperplane section of Y relative to the ample line
bundle L.

Proof. Let us express Y as a quotient of Spin7 by the maximal reduced parabolic Q3

associated to the short simple root. Since Spin7 is simply connected, the Picard group of
Y identifies with the group of characters of Q3. Under this identification, the embedding
(3.2.9) is given by the representation of Spin7 acting on U ··= H0(Y,L), whose associated
weight ϖ is the third fundamental weight in type B3. This weight is minuscule, so the set
of weights of U is acted on transitively by the Weyl group. This gives that the weights of
the diagonal maximal torus (3.1.4) of SO7 in U are

1

2
(±ε1 ± ε2 ± ε3) .(3.2.10)

In particular, U has dimension 8, so that (3.2.9) is a codimension one embedding of Y into
P(U∨). Moreover, by [Ram, Theorem 3.11], the homogeneous ideal of Y is generated by
degree 2 elements, hence there is some non-degenerate quadratic form q on U of which Y
is the zero locus.
Next, let us restrict the representation to G: the maximal torus T we consider is the one
given in (6.1.4), hence (3.2.10) gives as T -weights of U the six short roots

±α1, ±(α1 + α2), ±(2α1 + α2),

together with twice the zero weight. In particular, U admits, as a G-module, only two
irreducible quotients, the trivial representation and the simple module W which has as
weights the six short roots. Moreover, the quadratic form q provides an isomorphism
between U and its dual as G modules: in particular, there exists some linear form h on
U invariant by G. Since the base point of Q corresponds to a B-stable line in U with
weight ϖ, h must vanish on it and therefore there is an inclusion of Q into the hyperplane
H = (h = 0). Finally, the intersection H ∩ Y has dimension 5, contains Q and is a
hypersurface because h is linear and q non-degenerate, hence it must coincide with Q and
we are done. □

The above description of the variety Q holds in any characteristic. The case of charac-
teristic two is peculiar because there exists an embedding of G2 into Sp6, together with the
very special isogeny described in Example 2.5.16. We will now use these two ingredients
to get a geometric description of X, starting from the above realisation of the variety Q
and the natural quotient morphism Q ! X, induced by the inclusion of Pα1 = (Pl)red
into Pl.

Let us consider the following commutative diagram, which is induced by the quotient
W = V/ke and the associated purely inseparable isogeny

φ : SO(V ) = SO7 −! Sp6 = Sp(W ),

with kernel N ··= NSO7 . Let us recall that, by Lemma 3.2.15, Q is the G2-orbit of the
3-dimensional subspace defined by the short positive root vectors in Λ3V , while X is the
G2-orbit of the 3-dimensional subspace defined by the short positive root vectors in Λ3W .
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Q = G2/P
α1 X = G2/Pl

Y ··= SO7 /P3 Z ··= Sp6 /P
′
3 = SO7 /(NP3)

P(Λ3V ) P(Λ3W )

g

f

Proposition 3.2.18. The line bundle OZ(X) satisfies the equality PicZ = ZOZ(X).
In particular, X is a hyperplane section of Z with respect to the unique (very) ample
generator of PicZ.

Proof. By Lemma 3.2.17, the Picard group of Y is generated by OY (Q), hence Q
satisfies

Q · C̃ = 1,

where we denote respectively as C̃ and C the Schubert curves (associated to the short
simple root α3 in type B3 and the long simple root α′

3 in type C3; see Section 5.1 for a
detailed definition) in Y and in Z.
The morphism f is finite locally free of degree 8, which corresponds to the order of

NP3/P3 = N/(N ∩ P3).

Indeed, as seen in Example 2.5.16, the subgroup N ⊂ SO7 has height one and Lie algebra
n = g< of dimension 6, hence the order of N is 26. On the other hand, the order of N ∩P3

is 23 because

Lie(N ∩ P3) = n ∩ LieP3 = g−ε1−ε2 ⊕ g−ε1−ε3 ⊕ g−ε2−ε3

has dimension 3. In particular, this means that f∗f ∗X = 8X seen as elements of PicZ.
On the other hand, g is finite locally free of degree 4: the latter is the order of L, the
unipotent infinitesimal part of Pl. Thus we also have f∗Q = 4X : putting the two
equalities together implies f ∗X = 2Q in the Picard group of Y .
Next we notice that α3 is a short root in type B3, hence the very special isogeny acts as
a Frobenius morphism on the corresponding copy of the additive group in SO7. In other
words, the set theoretic equality f(C̃) = C becomes f∗C̃ = 2C on 1-cycles. In particular,

2 = 2Q · C̃ = f ∗X · C̃ = X · f∗C̃ = 2X · C.

This last computation together with the fact that PicZ ≃ Z allows us to conclude that
the line bundle associated to X generates the Picard group of Z. □

Up to this point we have realized the variety X = G/Pl using octonions. In particular,
this construction provides a new example (besides projective spaces and quadrics) of a
hyperplane section X of a homogeneous variety (Z,M), such that X is also homogeneous
and M generates the Picard group of Z. One might ask whether Theorem 3.1.1 still holds
for the variety X. Actually this is not the case, as illustrated in the following result.

Proposition 3.2.19. Let G be simple of type G2 in characteristic p = 2 and Pl the
parabolic subgroup of Definition 3.2.9. Then G/Pl is not isomorphic, as a variety, to a
quotient of the form G′/Pα for any G′ simple and α ∈ ∆(G′).
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In particular, this means that Theorem 3.1.1 does not hold in this case. The first step
in the proof of Proposition 3.2.19 is the following.

Lemma 3.2.20. Let G′ be simple and let α be a simple root of G′. If dim(G′/Pα) = 5,
then such a variety is either isomorphic to Q ⊂ P6, to P5 or to G/Pα2 where G is of type
G2 and α2 is the long root.

Proof. Let us recall that

dim(G′/Pα) = |Φ+(G)| − |Φ+(Lα)|,

where Lα = Pα ∩ (Pα)− is a Levi subgroup, hence so we can compute this quantity
explicitly in each case.
Type An−1: for 1 ≤ m ≤ n− 1,

dim(G′/Pαm) = m(n−m) = 5

when (n,m) = (6, 5) or (6, 1). In that case, G′/Pα1 = G′/Pα5 ≃ P5.
Type Bn: the number of positive roots is n2.
• For 1 ≤ m ≤ n− 1, the Levi subgroup Pαm ∩ (Pαm)− is of type Am−1 ×Bn−m, so

dim(G′/Pαm) = n2 − m(m− 1)

2
− (n−m)2 = m

(
1−m

2
+ 2n−m

)
= 5

which only has as positive integer solutions the pairs (n,m) = (4, 5), which is absurd, and
(n,m) = (3, 1). In that case, G′ = SO7 and by Theorem 3.2.3 and Proposition 3.2.11 we
have SO7 /P

α1 ≃ G/Pα1 ≃ Q ⊂ P6.
• Considering the last simple root, Pαn ∩ (Pαn)− is of type An−1 and

dim(G′/Pαn) = n2 − n(n− 1)

2
=
n(n+ 1)

2

is never equal to 5.
Type Cn: the same computations as in type Bn give (n,m) = (3, 1), meaning G′ = PSp6

and - again by Theorem 3.2.3 - we have PSp6 /P
α1 = PSL6 /P

α1 ≃ P5.
Type Dn: the number of positive roots is n(n− 1).
• For 1 ≤ m ≤ n− 4, the Levi subgroup is of type Am−1 ×Dn−m, so

dim(G′/Pαm) = n(n−1)−m(m− 1)

2
−(n−m)(n−m−1) = m

(
1−m

2
+ 2n−m− 1

)
= 5

which has no positive integer solutions (n,m).
• For m = n− 3, the Levi subgroup is of type An−4 × A3, so

dim(G′/Pαm) = n(n− 1)− (n− 3)(n− 4)

2
− 6 = 5,

which gives n2 + 5n = 34 hence no integer solutions.
• For m = n− 2, the Levi subgroup is of type An−3 × A1 × A1, so

dim(G′/Pαm) = n(n− 1)− (n− 2)(n− 3)

2
− 1− 1 = 5,
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which gives n2 + 3n = 20 hence no integer solutions.
• For m = n− 1 or m = n, the Levi subgroup is of type An−1, so

dim(G′/Pαm) = n(n− 1)− n(n− 1)

2
=
n(n− 1)

2
,

which is never equal to 5.
Type E6: the number of positive roots is 36, and the following table

E6 α1 α2 α3 α4 α5 α6

Lα D5 A4 × A1 × A1 A2 × A2 × A1 A4 × A1 D5 A5

|Φ+(Lα)| 20 11 7 11 20 15

dim(G/Pα) 16 25 29 25 16 21

shows that the desired quantity is never equal to 5.
Type E7: the number of positive roots is 63 and the following table

E7 α1 α2 α3 α4 α5 α6 α7

Lα D6 A5 × A1 A1 × A2 × A3 A4 × A2 D5 × A1 E6 A6

|Φ+(Lα)| 30 16 10 13 21 36 21

dim(G/Pα) 33 47 53 50 42 27 42

shows that the desired quantity is never equal to 5.
Type E8: the number of positive roots is 120 and the following table

E8 α1 α2 α3 α4 α5 α6 α7 α8

Lα D7 A6 × A1 A1 × A2 × A4 A4 × A3 D5 × A2 E6 × A1 E7 A7

|Φ+(Lα)| 42 22 14 16 23 37 63 28

dim(G/Pα) 78 98 106 104 97 83 57 92

shows that the desired quantity is never equal to 5.
Type F4: a direct computation - see Section 3.1.5 - gives

dim(G′/Pα1) = dim(G′/Pα4) = 15 and dim(G′/Pα2) = dim(G′/Pα3) = 20.

Type G2: as we already know, both G/Pα1 = Q and G/Pα2 have dimension 5. □

Lemma 3.2.21. The variety X = G/Pl is not isomorphic to P5 nor to Q.

Proof. Let us consider the quotient map f : G/Pα1 −! G/Pl. By Corollary 3.2.16
we have Pl = L · Pα1 , hence the morphism f is finite, purely inseparable and of degree
4. Assume X ≃ P5, then we get f : Q −! P5. Considering the line bundle OQ(1) =

OP6(1)|Q, we have that PicQ = Z · OQ(1) and f ∗OP5(1) = OQ(m) for some m > 0, since
it has sections. Taking degrees, this gives on the left hand side

f ∗OP5(1) · f ∗OP5(1) · f ∗OP5(1) · f ∗OP5(1) · f ∗OP5(1)

=(deg f) (OP5(1) · OP5(1) · OP5(1) · OP5(1) · OP5(1)) = deg f,

so we get deg f = 4. On the right hand side, this equals

OQ(m) · OQ(m) · OQ(m) · OQ(m) · OQ(m)

= ρ∗OP5(m) · ρ∗OP5(m) · ρ∗OP5(m) · ρ∗OP5(m) · ρ∗OP5(m)

= (deg ρ)(OP5(m) · OP5(m) · OP5(m) · OP5(m) · OP5(m)) = (deg ρ ·m5),
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which has degree 2m5, where ρ is the projection of Proposition 3.2.11. Comparing degrees
one gets 4 = 2m5, which is absurd.

Now, let us assume instead that X ≃ Q, then f : Q −! Q is of degree 4 and again
f ∗OQ(1) = OQ(r) for some r > 0: the analogous computation of degrees yields 8 = 2r5,
which is again absurd. □

Lemma 3.2.22. The variety X = G/Pl is not isomorphic to G/Pα2. Thus, Proposi-
tion 3.2.19 holds.

Proof. Assume X ≃ G/Pα2 , then the G-action on X is given by a morphism θ : G!

Aut0G/Pα2 , the latter being equal to G by Theorem 3.2.3. In particular, θ is an isogeny
which satisfies θ−1(Pα2) = Pl. This means that there is some g ∈ G(k) such that

(ker θ) · gPα2g−1 = Pl.

Since ker θ is finite, taking the connected component of the identity and the reduced
subscheme on both sides implies that Pα2 and Pα1 are conjugate in G, which is a contra-
diction. □

The above study of Ph and Pl does not complete the classification (in characteristic
2) of homogeneous spaces having as stabilizer a parabolic subgroup whose reduced part
is equal to Pα1 . Let us consider a simple group G of type G2 and a nonreduced parabolic
subgroup P ⊂ G satisfying Pred = Pα1 , in characteristic p = 2. Moreover, let us assume
that LieP ̸= LieG, i.e. that LieP is equal to h (resp. l) and let us write P = U−

P · Pred,
where U−

P = P ∩ Ru(P
−
red): in particular, the unipotent infinitesimal subgroup U−

P is
contained in U−2α1−α2 (resp. in U−α1 ·U−α1−α2) and its order is |U−

P | = 2n for some n ≥ 2,
the case n = 1 being Ph treated above.

3.2.4. End of classification in type G2. Recall that we follow here the notation
from [Wen] : for a parabolic subgroup P , we denote as U−

P the intersection of P with the
unipotent radical of the opposite of Pred.

Lemma 3.2.23. Let P be a parabolic subgroup such that LieP = h. Then its unipotent
infinitesimal part U−

P has height one.

Proof. The reduced part of P is Pα1 , hence U−
P must be of the form u−2α1−α2(αpn)

for some n. Let us assume that n is at least equal to 2. This means that there is some
λ ∈ Ga such that λ2 ̸= 0 and u−2α1−α2(λ) ∈ P . Let us consider µ ∈ Ga and compute the
following commutator, which gives an element of P :

(u−2α1−α2(λ), uα1(µ)) = u−2α1−α2(λ)uα1(µ)u−2α1−α2(−λ)uα1(−µ) = (u−2α1−α2(λ)uα1(µ))
2

=





1 0 0 0 0 0

λ 1 0 0 0 0

0 0 1 0 0 0

0 0 λ2 1 0 0

0 0 0 0 1 0

0 0 0 0 λ 1


·



1 0 0 0 0 µ2

0 1 0 µ 0 0

0 0 1 0 µ 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





2

=



1 0 0 0 λµ2 0

0 1 µλ2 0 0 λµ2

0 0 1 0 0 0

0 0 0 1 µλ2 0

0 0 0 0 1 0

0 0 0 0 0 1


.
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The last quantity, when assuming µ2 = 0, coincides with u−3α1−2α2(µλ
2), which is a

contradiction with the fact that LieP = h does not intersect the root subspace associated
to the root −3α1 − 2α2. □

Lemma 3.2.24. Let P be a parabolic subgroup such that LieP = l. Then its unipotent
infinitesimal part U−

P has height one.

Proof. As before, the reduced part of P is Pα1 . Moreover, the unipotent part U−
P has

nontrivial and finite intersection with U−α1 and U−α1−α2 , of height m1 and m2 respectively.
Assuming the height of U−

P to be at least equal to 2 means we have (up to a reflection by
sα2) that m2 ≥ 2. Thus, let λ ∈ Ga such that λ2 ̸= 0 and µ ∈ αp, so that u−α1(µ) ∈ P .
Then the following commutator also belongs to P :

(u−α1−α2(λ), u−α1(µ)) = u−α1−α2(λ)u−α1(µ)u−α1−α2(−λ)u−α1(−µ) = (u−α1−α2(λ)u−α1(µ))
2

=





1 0 λ 0 0 0

0 1 0 0 λ2 0

0 0 1 0 0 0

0 0 0 1 0 λ

0 0 0 0 1 0

0 0 0 0 0 1


·



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 µ 0 1 0 0

0 0 µ 0 1 0

µ2 0 0 0 0 1





2

=



1 0 0 0 0 0

0 1 µλ2 0 0 0

0 0 1 0 0 0

λµ2 0 0 1 µλ2 0

0 0 0 0 1 0

0 0 λµ2 0 0 1


.

The last quantity coincides again with u−3α1−2α2(µλ
2), so we conclude as before. □

Definition 3.2.25. For an integer m ≥ 0, we denote as mH and mL the pull-back
respectively of the subgroups H and L under an m-th iterated Frobenius morphism.

Proposition 3.2.26. Let G be of type G2 in characteristic two.
Then the nonreduced parabolic subgroups of G having Pα1 as reduced part are all of the
form mGP

α1, mHPα1 or mLP
α1 for some m ≥ 0.

Proof. Let us consider such a subgroup P : its Lie algebra contains strictly LiePα1 ,
hence by Corollary 3.2.8 it is either equal to LieG, to h or to l. If LieP = LieG, then
there is a unique integer m ≥ 1 such that the Frobenius kernel mG is contained in P

while m+1G is not. Considering the quotient P ′ ··= P/mG allows us to assume that the
Lie algebra of P ′ is strictly contained in the one of G. Next, if LieP ′ = h (resp. l), by
Lemma 3.2.23 and Lemma 3.2.24, we have that P ′ = Ph (resp. Pl). Thus, the parabolic
P is obtained from Pα1 , Ph or Pl by pulling back with an iterated Frobenius morphism,
and we are done. □

This completes the proof of Theorem 3.2.1 and thus gives a complete classification of
homogeneous varieties with Picard group Z, which ends the proof of Theorem 3.1.1.

Remark 3.2.27. The last result, together with Proposition 3.2.18, has as consequence
the fact that any ample line bundle on an homogeneous variety of Picard rank one is very
ample, without any assumption of type nor characteristic. This will be generalized in
Corollary 5.4.3 to arbitrary Picard ranks.

Remark 3.2.28. Let us cite a reason why the geometry of a general projective homogen-
eous variety of Picard rank one may differ from the one of a generalized flag variety. This
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comes from the following generalization of a question of Lazarsfeld (see the end of [Laz]):
if X = G/P has Picard group isomorphic to Z and there is some surjective morph-
ism f : X ! Y , then is Y isomorphic to X? First, the iterated Frobenius morphisms
G/P ! G/mGP do not give a counterexample. However, the maps

G/Pα −! G/NGP
α and G2/P

α1 −! G2/Pl,

defined respectively under the edge hypothesis and in characteristic 2, are counterexamples.
Both these examples are purely inseparable surjective morphisms: the next natural step
would be adding the hypothesis for the morphism f to be generically étale.

3.3. End of classification

We state here - in all types but G2 - the desired modification of Wenzel’s description
of parabolic subgroups having as reduced subgroup a maximal one: they are all obtained
by fattening the reduced part with the kernel of a noncentral isogeny, which generalizes to
this setting the role of the Frobenius in characteristic p ≥ 5. We then give a criterion to
determine when two homogeneous spaces with Picard rank one have the same underlying
variety.

3.3.1. Consequences in rank one. We complete here the study in the case of Pi-
card rank one. Due to Proposition 3.2.19, let us make the assumption that the group G

is not of type G2 in characteristic two.

3.3.1.1. Classification, quasi-standard type. The results in the preceding Section allow
us to complete the classification of parabolic subgroups having as reduced subgroup a
maximal one. Let us recall that, by [Wen], if the Dynkin diagram of G is simply laced
or if p ≥ 5, then such subgroups are of the form

mGP
α = (kerFm

G )Pα.

Example 3.3.1. Before moving on to state the classification, let us mention the very first
examples that were constructed of two parabolic subgroups which have maximal reduced
part and are not of standard type (meaning, of the form just above). These are called
exceptional parabolic subgroups in [Lau2, Section 3.3]. In this article, he constructs these
examples by means of representation theory methods; we are able here to give a more
concise description. Let us place ourselves over a field of characteristic p = 2. The first
example is the following: in a group of type B2, with short simple root α, the parabolic

NP α

is described, where N denotes the kernel of the very special isogeny. The second example,
on the other hand, is the parabolic subgroup

NP β,

where β is the long simple root, in a group of type C4.
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Theorem 3.3.2. Let G be simple and P be a non-reduced parabolic subgroup of G such
that its reduced subgroup is maximal i.e. of the form Pred = Pα for some simple root α.
Then there exists an isogeny φ with source G such that

P = (kerφ)Pα,

unless G is of type G2 over a field of characteristic p = 2 and α is the simple short root.

Proof. First, Proposition 3.1.9, Proposition 3.1.10, Proposition 3.2.4, Proposition 3.1.16,
Remark 3.1.13 and Remark 3.1.15 imply that if G is simple and Pred is a maximal reduced
parabolic subgroup, then either P is reduced, or there exists a nontrivial noncentral nor-
mal subgroup of height one contained in P . This subgroup is either H = NG - when it is
defined - or the image of the Frobenius kernel of the simply connected cover of G.
Now, let us consider the given parabolic P . If it is reduced, then there is nothing to prove.
If it is nonreduced, then there is a noncentral subgroup H(1) ⊂ P normalized by G and
of height one. Let us denote as

φ1 : G −! G/H(1) =: G(1)

the quotient morphism and replace the pair (G,P ) with (G(1), P(1)), where P(1) ··= P/H(1).
This gives again a parabolic subgroup whose reduced subgroup is maximal, hence either
P(1) is reduced or we can repeat the same reasoning to get an isogeny

φ2 : G −! G/H(1) −! G/H(2) =: G(2).

Setting P(2) ··= G/H(2) we repeat the same reasoning again. This gives a sequence
(G(m), P(m)) which ends with a reduced parabolic subgroup in a finite number of steps :
indeed, P/Pred is finite so it is not possible to have an infinite sequence

Pred ⊊ H(1)Pred ⊊ · · · ⊊ H(m)Pred ⊊ · · · ⊊ P.

Thus, let us set H ··= H(m) for m big enough and φ ··= φm. Then we claim that P =

HPα = (kerφ)Pα.
Both H and Pα are subgroups of P by construction, hence HPα ⊂ P . Quotienting by H
then gives

HPα/H = Pα/(H ∩ Pα) ⊂ P/H = P(m).

Since both are reduced and have the same underlying topological space, they must coincide
hence HPα = P . □

In particular, using our previous results on factorisation of isogenies, we can give a
very explicit description of the kernels involved in the classification.

Corollary 3.3.3. Keeping the above notation and the ones given in Definition 2.5.8, in
the equality P = (kerφ)Pα, there are only the two following options:

(a) either kerφ = kerFm
G = mG is the Frobenius kernel,

(b) or, when such a subgroup is defined, kerφ = ker(πG(m) ◦ Fm
G ) = mNG.

Proof. Let us first assume G to be simply connected and consider the factorisation
of the isogeny φ given by Proposition 2.5.12

φ : G G′′ G′,σ ρ
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where σ = π ◦ Fm and ρ is central. Let α, α′′ and α′ be simple roots of G, G′′ and G′

respectively, defined by the equalities

Pred = Pα, σ(Pα) = Pα′′
, ρ(Pα′′

) = Pα′
.

Then
P = (ker ρσ)Pα = (ρσ)−1(Pα′

) = σ−1(Pα′′
) = (kerσ)Pα,

hence replacing φ by σ and G′ by G′′ gives one of the cases (a) and (b).
If G is not simply connected, then we can consider the pull-back P̃ ··= ψ−1(P ) ⊂ G̃ in the
simply connected cover. Applying the above reasoning to P̃ yields

either P = ψ(P̃ ) = ψ(mG̃P
α) = mGP

α, or P = ψ(P̃ ) = ψ(mNG̃P
α) = mNGP

α

and we are done. □

3.3.1.2. Comparing varieties of Picard rank one. Let us start by considering a homo-
geneous variety X = G/P under the action of a simple adjoint group G, having Picard
group of rank one. Then set

G0 ··= Aut0X and P0 ··= Stab(x) ⊂ G0,

where x ∈ X is a closed point and where we keep as notation for the automorphism
group the same as in Remark 2.3.1. Since the radical of G0 is solvable and acts on the
projective variety X, it has a fixed point: being normal in G0, it is trivial. Analogously,
the center of G0 - which is contained in a maximal torus - is trivial. Moreover, the hy-
pothesis PicX = Z together with Theorem 5.1.9 imply that G0 is simple. So the group
G0 is simple adjoint and uniquely determined by the variety X, while P0 is a parabolic
subgroup whose reduced subgroup is maximal. Its conjugacy class is uniquely determined
by X up to an automorphism of the Dynkin diagram of G0. Moreover, since the action
of G0 on X is faithful, by Theorem 3.1.2 we have that P0 is reduced, hence of the form
P0 = Pα for a simple root α.

Now, let us consider the action of G on X: we want to relate in all possible cases the pair
(G,P ) to the pair (G0, P0). This will give us a way to determine, given two homogeneous
spaces G/P and G′/P ′, whether they are isomorphic as varieties. Let us recall that, as in
Proposition 2.5.12, we denote as G the simple, simply connected group whose root system
is dual to the root system of G. The group G is the target of the very special isogeny of
G.

Proposition 3.3.4. If the pair (G0, P0) is not exceptional in the sense of Demazure, then
one of the following two cases holds :

(a) G = G0 and P = mGP
α, where Pα = P0 up to an automorphism of the Dynkin

diagram of G,
(b) G = (G0)ad and P = mNGP

α, where Pα = πG0(P0)/Z(G0) up to an automorph-
ism of the Dynkin diagram of G.

If (G0, P0) is exceptional, then there are two additional possibilities - denoting as (G′
0, P

′
0)

the associated pair in the sense of Demazure :
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(a’) G = G′
0 and P = mGP

α, where Pα = P ′
0 up to an automorphism of the Dynkin

diagram of G,
(b’) G = (G′

0)ad and P = mNGP
α, where Pα = πG′

0
(P ′

0)/Z(G
′
0) up to an automorph-

ism of the Dynkin diagram of G.

Proof. Let us start by assuming that (G0, P0) is not exceptional in the sense of
Demazure. By Corollary 3.3.3, either P = mGP

α or P = mNGP
α for some α. In the first

case,
X = G/mGP

α = G(m)/(Pα)(m) ≃ G/Pα

as varieties, hence by Theorem 3.2.3 this implies G = Aut0X = G0 and Pα = P 0, leading
to (a). In the second case,

X = G/mNGP
α = G

(m)
/(Pα)(m) ≃ G/Pα = Gad/

(
Pα/Z(G)

)
as varieties, hence by Theorem 3.2.3 again Gad = Aut0X = G0 and P0 = Pα/Z(G).
Considering their respective images by the very special isogeny of Gad gives (b).
If (G0, P0) is exceptional in the sense of Demazure, Theorem 3.2.3 allows for two additional
cases: to get the conclusion it is enough to repeat the same reasoning by replacing (G0, P0)

with (G′
0, P

′
0). □



CHAPTER 4

Classification of all parabolic subgroups

Abstract. This chapter brings to an end the classification of non-reduced parabolic
subgroups in positive characteristic, especially two and three: they are all obtained as
intersections of parabolics having maximal reduced part.

4.1. The statement

We prove the following classification result.

Theorem 4.1.1. Let P be a parabolic subgroup of a semisimple group G over an
algebraically closed field of any characteristic, with reduced part PI . Then the inclusion

P ⊆
⋂

α∈∆\I

⟨P, Pα⟩(4.1.1)

is an equality; in particular, P is intersection of parabolic subgroups with maximal reduced
part.

4.1.1. Isogenies. Let us recall a factorisation property of isogenies with simple,
simply connected source (proved in Proposition 2.5.12). Then, let us introduce the no-
tion of parabolic subgroup of quasi-standard type, slightly generalising the definition of
parabolic of standard type (first introduced in Definition 2.3.18) in order to work with
small characteristics.

Proposition 4.1.2. Let G be simple, simply connected and let us consider an isogeny

ξ : G! G′.

Then there exists a unique factorisation of ξ:
• either as the composition of the very special isogeny, followed by an iterated

Frobenius morphism and then a central isogeny (which can only occur when the
edge hypothesis is satisfied by G);

• or as the composition of an iterated Frobenius morphism with a central isogeny.

Definition 4.1.3. A parabolic subgroup is said to be of quasi-standard type if it is of the
form

P =
⋂

α∈∆\I

(ker ξα)P
α

for some isogenies ξα with no central factor.

Let us notice that by Proposition 4.1.2, the subgroup ker ξα is necessarily of the form
mGP

α or mNGP
α. Moreover, the latter are enough to describe all parabolic subgroups

having maximal reduced part, in all types except for a group of type G2 in characteristic
2, in view of the following classification result, proved in Theorem 3.3.2.

95
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Proposition 4.1.4. Let P be a parabolic subgroup of G such that its reduced subgroup is
equal to Pα for some simple root α.
Then there exists a unique isogeny ξ with no central factor such that

P = (ker ξ)Pα,

unless G is of type G2 in characteristic 2 and α is the short simple root.

Remark 4.1.5. With respect to the order given in Remark 2.5.13, ξ is minimal : in other
words, for any isogeny ζ such that ker ζ is strictly contained in ker ξ, the subgroup P is
not contained in (ker ζ)Pα. This is a crucial point in the proof of Theorem 4.1.1.

Let us consider a semisimple, simply connected group G, together with a Borel sub-
group B and a maximal torus T , and keep all the previous notation. The first step is the
following result, which allows us to reduce to the case of a simple group.

Lemma 4.1.6. Any parabolic subgroup P of a semisimple simply connected group

G = G1 × · · · ×Gn

is a product of the parabolic subgroups Pi ··= P ∩Gi of the simple factors Gi.

In particular, from now on we can (and will) assume the group G to be simple.

Proof. Let us start by the following : we have

P = U−
P · Pred, U−

P ∩ Pred = 1,

where U−
P denotes the intersection of P with the unipotent radical of the opposite of Pred;

this structure result has been recalled in (2.3.2). Thus, we can see P as a product of
its unipotent infinitesimal part and its reduced part. Moreover, we have the following
isomorphism:

U−
P =

∏
γ∈Φ+\ΦI

(U−
P ∩ U−γ),

where I ⊂ ∆ is the basis for the root system of a Levi subgroup. This implies that

U−
P = U−

P1
× · · · × U−

Pn
.

On the other hand, it is a classical fact that

Pred = (P1)red × · · · × (Pn)red.

Putting these equalities together allows to conclude that P is the product of the Pis. □

4.1.2. Divisors and contractions. Consider a homogeneous variety

X = G/P, with Pred = PI

and denote as o its base point. As explained in detail in Section 5.1, there is a canonical
basis of the Picard group of X, given by the so-called Schubert divisors. The latter are
associated to simple roots and defined as

Dα ··= B−sαo, α ∈ ∆\I,(4.1.2)
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where B− denotes the Borel subgroup opposite to B. In Section 5.2, we build a finite
family of morphisms

fα : X −! G/Qα ··= Proj
⊕
m≥0

H0(X,OX(mDα)), α ∈ ∆\I.(4.1.3)

We construct fα as the the unique contraction (see Lemma 5.2.4 for the general construc-
tion) on G/P such that the Schubert curves

Cβ ··= U−βo, β ∈ ∆\I,

which are smooth, are all contracted to a point except for Cα. By Blanchard’s Lemma
(see Theorem 5.2.3 below), there is a unique G-action on the target making the morphism
fα equivariant: what we denote by Qα is the stabilizer of such an action. Then we show
that Qα is the subgroup generated by P and Pα.

Lemma 4.1.7. In all types except for G2 in characteristic 2, there is a unique isogeny ξα
with no central factor, such that

Qα = ⟨P, Pα⟩ = (ker ξα)P
α.

Proof. By construction, Qα has maximal reduced part equal to Pα, hence we can
apply Proposition 4.1.4 and Remark 4.1.5 and we are done. □

4.2. Height on simple root subgroups

Let us start by proving a Lemma which is repeatedly used in the proof of The-
orem 4.1.1. This result tells us that the inclusion (4.1.1) is not so far from being an
equality: more precisely, when intersecting with the root subgroup associated to the op-
posite of a simple root, one gets the same height on both sides.

Lemma 4.2.1. Let P be any parabolic subgroup of G and α a simple root. Then

U−α ∩ P = U−α ∩Qα.

Proof. The natural G-equivariant morphism

gα : X = G/P −! P(H0(X,OX(Dα))
∨)

is well-defined since Dα is globally generated (see Theorem 5.1.9 below). The canonical
section of H0(X,OX(Dα)), corresponding to a hyperplane Hα, gives the equality

g∗αO(Hα) = OX(Dα).(4.2.1)

On the other hand, the inclusion of the k-subalgebra generated by elements of degree
one into the direct sum ⊕m≥0H

0(X,OX(mDα)) gives a finite morphism hα, making the
following diagram commute.

X = G/P P(H0(X,OX(Dα))
∨)

Proj
⊕

m≥0H
0(X,OX(mDα)) = G/Qα

gα

fα
hα
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Since fα is a contraction and hα is finite, the above diagram is the Stein factorisation
of the morphism gα. Let us denote as Eα and Sα respectively the Schubert divisor and
the Schubert curve in G/Qα. Then set-theoretically the pre-image of Eα is Dα, while the
image of Cα is Sα. This means that there are some positive integers mα and nα such that
f ∗
αEα = mαDα and (fα)∗Cα = nαSα. The equality (4.2.1) yields

Dα = g∗αHα = f ∗
αh

∗
αHα,

hence mα must be equal to 1. Moreover,

1 = Dα · Cα = f ∗
αEα · Cα = Eα · (fα)∗Cα = nαEα · Sα = nα.

This means that fα restricts to an isomorphism from Cα to Sα: considering the restriction
to the respective affine open cells, we get

U−α/(U−α ∩ P ) = U−α/(U−α ∩Qα)

as wanted. □

4.3. Proof of the main result

This section is dedicated to the proof of Theorem 4.1.1. By Lemma 4.1.6, we may and
will assume the group G to be simple.

4.3.1. Ingredients for the proof. We use the classification results proven in The-
orem 3.3.2 and Proposition 3.2.26, as well as Lemma 4.2.1 and the factorisation of isogenies
with simply connected source. Before moving on to the proof, which is a case-by-case ar-
gument, let us fix the notation and state a few remarks of which we repeatedly make use
below.
As in Definition 2.3.15, we associate to P the numerical function

φ : Φ −! N ∪ {∞}

defined as follows: for a root γ, the integer φ(γ) is the height of the intersection

U−γ ∩ P

when γ is positive and not in the Levi subgroup of PI ; and we extend it to φ(γ) = ∞
otherwise. Analogously, φi denotes the associated function to Qi ··= Qαi , where we keep
the notation of [Bou] concerning the standard bases of root systems.

Remark 4.3.1. (a) : In particular, we can reformulate Lemma 4.2.1 as

φ(αi) = φi(αi) = ht((ker ξi) ∩ U−αi
).

(b) : Let us recall that two parabolic subgroups P and P ′, with respective associated
functions φ and φ′ and with same reduced part PI , coincide if and only if

P ∩ U−γ = P ′ ∩ U−γ for all γ ∈ Φ+\ΦI ,

which is equivalent to saying that φ and φ′ are equal. This is proven in [Wen, Proposition
8].
(c) : The functions φi always coincide on roots of the same length. More precisely, if the
isogeny ξi is an iterated Frobenius, then φi is constant on all positive roots not in ΦI . On
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the other hand, if ξi is the composition of an m-th iterated Frobenius morphism and a
very special isogeny, then

m+ 1 = φi(γ) = φi(δ) + 1

for all short roots γ and all long roots δ not belonging to ΦI . The two integers above are
invariant under the action of the Weyl group, which has one orbit if G is simply laced
and two orbits (of long and short roots respectively) otherwise.

Let us recall the following result on structure constants: see [Hum, Chapter VII,
25.2].

Lemma 4.3.2. Let γ ̸= ±δ be roots and r a natural number such that

γ − rδ, . . . , γ, γ + δ

are roots but γ − (r + 1)δ is not. Then the corresponding vectors of the Chevalley basis
satisfy

[Xγ, Xδ] = ±(r + 1)Xγ+δ.

The integer r only depends on the roots γ and δ, and it is uniquely defined because
we are working with a fixed Chevalley basis. We denote it as

N (γ, δ)

in what follows. This allows us to formulate the following slight adaptation of an argument
in [Wen].

Lemma 4.3.3. Let γ and δ be roots such that γ + δ is a root but γ − δ is not. Then

φ(γ + δ) ≥ min{φ(γ), φ(δ)}.

Proof. Let m ··= φ(γ + δ) be the height of

U−γ−δ ∩ P.

Let us consider a, b ∈ Ga such that u−γ(a) and u−δ(b) are in P . Then the commutator

(u−γ(a), u−δ(b)) =
∏

u−iγ−jδ(cija
ibj),

where the product ranges over the finite set of couples of positive integers (i, j) such that
iγ + jδ is a root, has a factor u−γ−δ(±ab), because

c11 = N (γ, δ) = ±1.

By [Wen, Proposition 8], u−γ−δ(ab) belongs to U−γ−δ ∩ P , hence (ab)p
m vanishes. In

particular either apm or bpm is zero, which means that the minimum between the height
of U−γ ∩ P and U−δ ∩ P is less than or equal to m, as wanted. □
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4.3.2. Type Bn and Cn. In this section we consider a simply connected group G of
type Bn or Cn, over an algebraically closed field of characteristic p = 2. Let

• P be the pull-back of P via the very special isogeny

π ··= πG : G −! G;

• αi ↔ αi the bijection on simple roots induced by π, which we recall exchanges
long and short roots;

• ψ and ψi the respective associated functions to P and to

ker(ξi ◦ π)Pαi = ⟨Q,Pαi⟩.

The situation is summarized in the following diagram.

P
⋂
αi∈∆\I ker(ξi ◦ π)Pαi G

P
⋂
αi∈∆\I(ker ξi)P

αi G

π

Lemma 4.3.4. If (4.1.1) is an equality for all parabolic subgroups of a group of type Bn,
then the same holds in type Cn.

Proof. We make use of the above diagram: let G be of type Cn, then by assumption
(4.1.1) holds for the parabolic subgroup P , which means that

ψ(γ) = min
i
{ψi(γ)}

for all positive roots γ of G, where γ ↔ γ is the bijection induced by the very special
isogeny. This implies

φ(γ) = ψ(γ) = min
i
{ψi(γ)} = min

i
{φi(γ)} if γ is short,

φ(γ) = ψ(γ)− 1 = min
i
{ψi(γ)− 1} = min

i
{φi(γ)} if γ is long,

so we are done. □

In order to prove Theorem 4.1.1 for a group of type Bn, we proceed by induction on
n, of which the first step is the case n = 2 below.

Lemma 4.3.5. Let

P ⊂ (ker ξ1)P
α1 ∩ (ker ξ2)P

α2 ⊂ Spin5

be a parabolic subgroup in type B2, with reduced part the Borel subgroup.
Then (4.1.1) is an equality.

Proof. Below is a picture of the respective root systems (which are isomorphic) in
order to visualise the very special isogeny and make the proof easier to read: a basis in
type B2 is given by a long root α1 and a short root α2, while in type C2 it is given by a
short root α1 and a long root α2.
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α1 + α2

α1 + 2α2
α2

α1

TYPE B2

2α1 + α2

α1

α1 + α2

α2

TYPE C2

By Remark 4.3.1 (b), it is enough to prove the following:

φ(α1 + α2) ≥ min{φ1(α1 + α2), φ2(α1 + α2)};(4.3.1)

φ(α1 + 2α2) ≥ min{φ1(α1 + 2α2), φ2(α1 + 2α2)},(4.3.2)

because the opposite inequalities are already implied by the inclusion (4.1.1).
Let us consider the two integers

r1 ··= φ1(α1) and r2 ··= φ2(α2).

Given that α1 is a long root, we have either

ξ1 = F r1 or ξ1 = F r1 ◦ π,(4.3.3)

because by Proposition 4.1.2 these are the only two isogenies with no central factor whose
kernel has height r1 on long root subgroups. Analogously, α2 being a short root, we have
either

ξ2 = F r2 or ξ2 = F r2−1 ◦ π.(4.3.4)

for the same reason.
Step 1: Let us start by considering the root α1 + α2. We have that N (α1, α2) = ±1, so

φ(α1 + α2) ≥ min{φ(α1), φ(α2)} by Lemma 4.3.3,

= min{φ1(α1), φ2(α2)} by Remark 4.3.1 (a).

This translates into the inequality

φ(α1 + α2) ≥ min{r1, r2}.(4.3.5)

Since α2 and α1 + α2 are both short, we have

φ2(α1 + α2) = r2

by Remark 4.3.1(c). Moreover, if ξ1 is an r1-th iterated Frobenius, then

φ1(α1 + α2) = r1

so that by (4.3.5) we are done. So let us assume that

ξ1 = F r1 ◦ π,(4.3.6)
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which in particular means
φ1(α1 + α2) = r1 + 1.

What is left to prove in this case is that

φ(α1 + α2) ≥ min{r1 + 1, r2}.

Now, if r2 ≤ r1, then (4.3.5) becomes

φ(α1 + α2) ≥ min{r1, r2} = r2 = min{r1 + 1, r2}

and we are done. So let us assume that r1 < r2: again by (4.3.5), it is enough to get a
contradiction with the assumption

φ(α1 + α2) = r1.

Let us assume this last equality to be true, and remark that by (4.3.4), since α1 + 2α2 is
a long root we have

φ2(α1 + 2α2) ≤ r2

in both cases. Next, the inclusion (4.1.1) gives

φ(α1 + 2α2) ≤ min{φ1(α1 + 2α2), φ2(α1 + 2α2)} ≤ min{r1, r2} = r1.

In particular, all positive roots γ whose support contains α1 satisfy φ(γ) ≤ r1. In other
words, the subgroup P is contained in r1GP

α1 . However, this implies that

⟨P, Pα1⟩ = (ker ξ1)P
α1 ⊂ r1GP

α1 ,

which contradicts (4.3.6).

Step 2: Let us move on to the root α1 + 2α2: consider the pull-back

P ··= π−1(P ) ⊆ ker(ξ1 ◦ π)Pα1 ∩ ker(ξ2 ◦ π)Pα2 ,

which is a parabolic subgroup of Sp4.
The very special isogeny π sends α1 + α2 to α1 + 2α2: in particular, pulling back via π
gives

ψ(α1 + α2) = φ(α1 + 2α2) + 1(4.3.7)

and the analogous equalities hold for ψ1 and ψ2. Thus proving (4.3.2) is equivalent to
showing that

ψ(α1 + α2) ≥ min{ψ1(α1 + α2), ψ2(α1 + α2)}.(4.3.8)

Now, the structure constant N (α1, α2) is equal to ±1, so we have

ψ(α1 + α2) ≥ min{ψ(α1), ψ(α2)} by Lemma 4.3.3

= min{ψ1(α1), ψ2(α2)} by Remark 4.3.1 (a).

This translates into the inequality

ψ(α1 + α2) ≥ min{r1 + 1, r2}.(4.3.9)

Next, α1 + α2 and α1 are both short, which implies

ψ1(α1 + α2) = ψ1(α1) = r1 + 1
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by Remark 4.3.1(c). On the other hand, α2 is long, hence (again by Proposition 4.1.2)

ψ2(α1 + α2) =

{
ψ2(α2) = r2 if ξ2 ◦ π = F r2 ;

ψ2(α2) + 1 = r2 + 1 if ξ2 = F r2 .

In the first case, (4.3.8) automatically holds, so let us assume we are in the second one,
namely that the isogeny ξ2 is an r2-th iterated Frobenius, which in particular means that

ψ2(α1 + α2) = r2 + 1.

What is left to prove in this case is that

ψ(α1 + α2) ≥ min{r1 + 1, r2 + 1}.

Now, if r2 > r1, then (4.3.9) becomes

ψ(α1 + α2) ≥ min{r1 + 1, r2} = r1 + 1 = min{r1 + 1, r2 + 1}

and we are done. So let us assume that r2 ≤ r1. Again by (4.3.9), it is enough to get a
contradiction with the assumption

ψ(α1 + α2) = r2.

If this last assumption holds, then pushing forward to P and using (4.3.7) gives

φ(α1 + 2α2) = ψ(α1 + α2)− 1 = r2 − 1.

Putting this together with (4.3.1), which has been proved in Step 1 above, yields

φ(α1 + α2) = min{φ1(α1 + α2), φ2(α1 + α2)} ≤ r2.

In particular, the subgroup P is contained in ker(F r2−1 ◦ π)Pα2 , thus implying

⟨P, Pα2⟩ = (ker ξ2)P
α1 ⊂ ker(F r2−1 ◦ π)Pα2 ,

which contradicts the assumption that ξ2 = F r2 . □

Proposition 4.3.6. Let P be as in the diagram above in type Bn or Cn.
Then (4.1.1) is an equality.

Proof. Lemma 4.3.4 and Lemma 4.3.5 imply that the statement holds for n = 2.
Let us assume it to be true in types Bn and Cn, with respective basis

α1, . . . , αn and α1, . . . , αn,

and consider the groups of type Bn+1 and Cn+1, with respective basis

α0, α1, . . . , αn and α0, α1, . . . , αn.

First, by Lemma 4.3.4 we can reduce to the case of a group of type Bn+1. Moreover, by
Remark 4.3.1(b), it suffices to show that

φ(γ) = min{φi(γ) : αi ∈ Supp(γ)} for all γ ∈ Φ+\Φ+
I .(4.3.10)

Step 1: Let us assume that the simple root α0 is not in the support of γ and let Lα0

be the Levi subgroup associated to α0 (namely, with basis all simple roots except for the
first one): then Lα0 is of type Bn and the inclusion

U−γ ⊂ Lα0
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is satisfied. We can thus apply the induction hypothesis and conclude that (4.3.10) holds
for γ.

Step 2: Let us consider a root of the form

γ = ε0 − εi, 1 ≤ i ≤ n.

Denoting as Lαn the Levi subgroup associated to the last simple root αn, we see that Lαn

is of type An−1 hence simply laced; moreover, the inclusion

U−γ ⊂ Lαn

is satisfied. In particular, the intersection P ∩ Lαn is a parabolic subgroup of Lαn , hence
of standard type, from which we deduce the equality (4.3.10) for γ.

Step 3: Next, let us consider the root

γ = ε0.

The structure constant N (ε0 − ε1, ε1) is equal to ±1, so we have

φ(ε0) ≥ min{φ(ε0 − ε1), φ(ε1)} by Lemma 4.3.3

= min{φ0(α0), φ(ε1)} by Remark 4.3.1 (a)

= min{φ0(α0), φi(ε1), i > 0} by Step 1

= min{φ0(α0), φi(ε0), i > 0} by Remark 4.3.1(c).

If α0 belongs to I then we are done because φ0(α0) = ∞. Hence we can assume α0 to be
in ∆\I and set

r0 ··= φ0(α0) and r ··= min{φi(ε0), i > 0}.

Since α0 is a long root, by Proposition 4.1.2 the isogeny ξ0 is either equal to an r0-th
iterated Frobenius or to its composition with a very special isogeny. In the first case we
directly have (4.3.10) and we are done, so let us assume that

ξ0 = F r0 ◦ π.(4.3.11)

In particular, φ0(ε0) is equal to m+ 1. Thus, the inequalities above become

φ(ε0) ≥ min{r0, r}.

If r is less than or equal to r0 we are again done, so let us assume r0 < r. We want to
exclude the possibility of a strict inequality i.e.

r0 = φ(ε0).

However, since ε0 is the only short root containing α0 in its support, this last assumption
implies that P is contained in r0GP

α0 . In particular,

⟨P, Pα0⟩ = (ker ξ0)P
α0 ⊂ mGP

α0 ,

which contradicts (4.3.11). This allows to conclude that (4.3.10) is always true for the
root ε0.
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Step 4: We have left to prove (4.3.10) for the roots

γ = ε0 + εi, 1 ≤ i ≤ n.

In this case, the support is equal to the whole of ∆. If i ̸= 1, we can use the fact that the
structure constant N (ε0 − ε1, ε1 + εi) is equal to ±1 to obtain

φ(ε0 + εi) ≥ min{φ(ε0 − ε1), φ(ε1 + εi)} by Lemma 4.3.3

= min{φ0(α0), φ(ε1 + εi)} by Remark 4.3.1 (a)

= min{φ0(α0), φl(ε1 + εi), l > 0} because (4.3.10) holds for ε1 + εi

= min
j
{φj(ε0 + εi)} by Remark 4.3.1(c).

On the other hand, if i = 1, we can proceed analogously using the fact that the structure
constant N (ε0 − εn, ε1 + εn) is equal to ±1, and we get

φ(ε0 + ε1) ≥ min{φ(ε0 − εn), φ(ε1 + εn)} by Lemma 4.3.3

= min{φj(ε0 − εn), j < n, φ(ε1 + εn)} because (4.3.10) holds for ε0 − εn

= min{φj(ε0 − εn), j < n, φk(ε1 + εn), k > 0} because (4.3.10) holds for ε1 + εn

= min
j
{φj(ε0 + ε1)} by Remark 4.3.1(c).

This concludes the proof. □

Lemma 4.3.7. Let us assume that we are working over a field of characteristic p = 3.
Then any parabolic subgroup of a simple group of type Bn or Cn is standard. In particular,
Theorem 4.1.1 also holds in this case.

We follow the reasoning in [Wen, Theorem 10], and we use the fact that all structure
constants appearing in the proof have absolute value strictly smaller than 3.

Proof. Keeping the above notation, the inclusion (4.1.1) becomes

P ⊆
⋂

α∈∆\I
mαGP

α,

where, by Remark 4.3.1(a) we have

mα = φ(α) = φα(α).

It is thus enough to prove the inequality

φ(γ) ≥ min{mα : α ∈ Supp(γ)},

by induction on the height of γ. If γ is simple then the statement is true. If not, let
α ∈ Supp(γ) such that γ − α is still a root. Then the structure constant

N (γ − α, α)

is equal to ±1 or to ±2; in particular it never vanishes over the base field. This implies,
by the same reasoning as the one in the proof of Lemma 4.3.3, that

φ(γ) ≥ min{φ(γ − α), φ(α)},

and we are done by the induction hypothesis. □
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4.3.3. Type F4. Consider a group G of type F4 over an algebraically closed field of
characteristic p > 0 (in particular p = 2 or p = 3 are the interesting cases for us).
Let us adapt all previous notation:

α1 α2 α3 α4

is the Dynkin diagram, and we denote as

Qi = ⟨P, Pαi⟩ = (ker ξi)P
αi , αi ∈ ∆\I,

the family of parabolic subgroups with maximal reduced part associated to P . Moreover,
we call φ and φi the associated functions to P and to ⟨P, Pαi⟩ respectively.

Proposition 4.3.8. The inclusion (4.1.1) is an equality in type F4.

Proof. By Remark 4.3.1(b), it is enough to show that

φ(γ) ≥ min
i
{φi(γ)}, for all γ ∈ Φ+\Φ+

I .(4.3.12)

Step 1: Let us assume that the support of γ is not equal to the whole of ∆. Then U−γ

is contained in a Levi subgroup of the form

L ··= Pαi ∩ (Pαi)−

for some i. In particular, L has root system of type C3 (if α1 is not in Supp(γ)), of type
B3 (if α4 is not in Supp(γ)) or of type A1×A2 (if one among α2 and α3 is not in Supp(γ)).
In any of these situations, the inequality (4.3.12) holds for γ, because

U−γ ∩ P = U−γ ∩ L

have same height, and because any parabolic subgroup in type C3, B3 and A1 × A2 is
intersection of parabolic subgroups with maximal reduced part.

Step 2: Let us consider a long root γ whose support is equal to ∆. By Lemma 4.3.9
proven below, the subgroup H generated by long root subgroups is of type D4. Let us
consider the following basis for the root system of H, as in (4.3.18):

β1 ··= α2 + 2α3 + α4 = ε1 − ε2, β2 ··= α1 = ε2 − ε3,

β3 ··= α2 = ε3 − ε4, β4 ··= α2 + 2α3 = ε3 + ε4.

Since γ is a long root satisfying

U−γ ∩ P = U−γ ∩H,

we can use the fact that the group of type D4 is simply laced to get

φ(γ) = min
i
{φ(βi)}.(4.3.13)

Next, let us consider again the βis as being roots of G; notice that their support is not
equal to the whole of ∆. This allows us to apply Step 1 to βi, to obtain

φ(βi) = min
j
{φj(βi) : αj ∈ Supp(βi)}, 1 ≤ i ≤ 4.

In conclusion, (4.3.13) becomes

φ(γ) = min
i,j

{φj(βi) : αj ∈ Supp(βi)} = min
j
{φj(γ)}
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where the last equality is due to Remark 4.3.1(c); in particular, (4.3.12) holds for γ.

Step 3: Finally, we are led to consider short roots whose support is equal to the whole
of ∆. There are five of them, namely:

δ1 = α1 + α2 + α3 + α4 = δ2 − α3,

δ2 = α1 + α2 + 2α3 + α4 = δ3 − α2,

δ3 = α1 + 2α2 + 2α3 + α4 = δ4 − α3,

δ4 = α2 + 2α2 + 3α3 + α4 = δ5 − α4,

δ5 = α1 + 2α2 + 3α3 + 2α4 = δ1 + (α2 + 2α3 + α4).

Let us recall that we set the function φ to be constant and equal to infinity on negative
roots. Moreover, we have

N (δ2,−α3) = ±1, because δ2 + α3 is not a root;

N (δ3,−α2) = ±1, because δ3 + α2 is not a root;

N (δ4,−α3) = ±1, because δ4 + α3 is not a root;

N (δ5,−α4) = ±1, because δ5 + α4 is not a root;

N (δ1, ν) = ±1,where ν = α2 + 2α3 + α4, because δ1 + ν is not a root.

The structure constants just above imply, by Lemma 4.3.3, that

φ(δ1) ≥ φ(δ2) ≥ φ(δ3) ≥ φ(δ4) ≥ φ(δ5) ≥ min{φ(δ1), φ(ν)}.(4.3.14)

We can now apply Step 1 to the root ν, because its support is not the whole of ∆, as well
as Remark 4.3.1(c), to obtain

φi(ν) = φi(δ1)

for all i. In particular,

min{φ(δ1), φ(ν)} = min{φ(δ1), φ2(ν), φ3(ν), φ4(ν)}
= min{φ(δ1), φ2(δ1), φ3(δ1), φ4(δ1)} = φ(δ1).

Together with (4.3.14), we can deduce that

φ(δ1) = φ(δ2) = φ(δ3) = φ(δ4) = φ(δ5),

so that it is enough to show

φ(δ1) ≥ min
i
{φi(δ1)} =: m.(4.3.15)

Let us prove (4.3.15): first, let us notice that we have

φ(δ1) ≥ min{φ(α1 + α2 + α3), φ(α4)} because N (α1 + α2 + α3, α4) = ±1;

≥ min{φ(α1 + α2), φ(α3), φ(α4)} because N (α1 + α2, α3) = ±1;

≥ min{φ(α1), φ(α2), φ(α3), φ(α4)} because N (α1, α2) = ±1;

= min
i
{φi(αi)} by Remark 4.3.1(a);

= min
i
{φ1(α1), φ2(α2), φ3(δ1), φ4(δ1)} by Remark 4.3.1(c).
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If the minimum just above is realised by φ3(δ1) or φ4(δ1), then (4.3.15) holds and we are
done. If the minimum is realised by φ1(α1) and ξ1 is an m-th iterated Frobenius, then we
have

m = φ1(α1) = φ1(δ1)

and we are also done; analogously for φ2(α2).
We are left with the following cases, for which (4.3.15) becomes a strict inequality:

(a) : m = φ2(δ1) > φ2(α2) = m− 1, i.e. ξ2 = Fm−1 ◦ π, or

(b) : m = φ1(δ1) > φ1(α1) = m− 1, i.e. ξ1 = Fm−1 ◦ π.

Let us assume we are in one of these two situations. We want to get a contradiction with
the assumption (respectively):

in (a), m− 1 = φ(δ1) < φ2(δ1) = m;

in (b), m− 1 = φ(δ1) < φ1(δ1) = m.

We now claim that in both situations (a) and (b) all positive short roots γ containing α2

in their support satisfy

φ(γ) ≤ m− 1.(4.3.16)

Notice that in the root system of type F4, all short roots containing α1 in their support
also contain α2, so that this reasoning works for both (a) and (b).
The inequality (4.3.16) is true for δ1 . . . δ5 by (4.3.14), hence we can consider γ such that
its support is not equal to ∆. These roots are

γ1 = α1 + α2 + α3, satisfying φ(γ1) ≤ φ(δ1) because N (α1 + α2 + α3, α4) = ±1;

γ2 = α2 + α3, satisfying φ(γ2) ≤ φ(γ1) because N (α2 + α3, α1) = ±1;

γ3 = α2 + α3 + α4, satisfying φ(γ3) ≤ φ(δ1) because N (α2 + α3 + α4, α1) = ±1;

γ4 = α1 + 2α2 + α3, satisfying φ(γ4) ≤ φ(γ3) because N (α2 + 2α3 + α4,−α3) = ±1.

In particular, this yields, using Lemma 4.3.3 at each step, that

P ⊆ m−1GP
α2 in case (a),

P ⊆ m−1GP
α1 in case (b).

This would imply that the kernel of ξ2 (resp. of ξ1) is contained in m−1G, which contradicts
the assumption (a) (resp. the assumption (b)). Hence (4.3.15) holds and we are done. □

Lemma 4.3.9. Let G be of type F4. Then the root subgroups associated to long roots of
G generate a semisimple subgroup of type D4.

Proof. We proceed in two consecutive steps: the first one realises an embedding of
K = Spin9 into G, while the second one an embedding of H = Spin8 into K, such that
the root system of H consists exactly of all the long roots of G.
Step 1: Keeping the notation for root systems of [Bou], we have that

±εi, ±εi ± εj, i ̸= j(4.3.17)
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form a root subsystem of Φ of type B4, with basis

ν1 ··= ε1−ε2 = α2+2α3+2α4, ν2 ··= ε2−ε3 = α1, ν3 ··= ε3−ε4 = α2, ν4 ··= ε4 = α3.

The subgroup generated by these roots in the character lattice of the maximal torus T of
G is

R ··= ⟨ν1, ν2, ν3, ν4⟩ = ⟨α1, α2, α3, 2α4⟩ ⊂ X(T )

which has index 2. The quotient map

X(T ) −! Z/2Z

corresponds to an injection M ⊂ T , where M is a copy of µ2.
Let K be the connected component of the identity of the centralizer of M in G: by
Lemma 4.3.10 below, K is smooth and reductive. Its Lie algebra satisfies

LieK = LieCG(M) = (LieG)M = LieT ⊕ {gγ : tXt−1 = X for all X ∈ gγ, t ∈M}.

Let us consider some t ∈M and X ∈ gγ; by definition of root subspaces, we have

tXt−1 = γ(t)X.

Moreover, by construction of M we have γ(t) ∈ µ2 and γ(M) = 1 if and only if the
coefficient of α4 (in the unique expression of γ as linear combination of simple roots with
integer coefficients of the same sign) is even. This means exactly that gγ is contained in
LieK if and only if γ is one of the roots in (4.3.17). Finally, we can conclude that K is
simply connected of type B4, with the desired set of roots and with maximal torus

T ′ ··= (T ∩K)0red.

Step 2: The second step follows by the exact same reasoning, by considering

±εi ± εj, i ̸= j

as a root subsystem of type D4, with basis

β1 ··= ν1, β2 ··= ν2, β3 ··= ν3, β4 ··= ε3 + ε4 = ν3 + 2ν4.(4.3.18)

These roots generate

R′ ··= ⟨β1, β2, β3, β4⟩ = ⟨ν1, ν2, ν3, 2ν4⟩ ⊂ R

as a subgroup of index 2. The corresponding quotient map

X(T ′) = R −! Z/2Z

corresponds to an injection M ′ ⊂ T ′, where M ′ is a copy of µ2. Thus, we get

H ··= CK(M
′)0

as a copy of Spin8 inside of Spin9 = K ⊂ G, having as roots exactly the long roots of
LieG, and we are done. □

Lemma 4.3.10. Let M ⊂ T ⊂ G with G a simply connected semisimple group and T a
maximal torus of G.
Then the identity component of the centralizer Z ··= CG(M)0 is smooth and reductive.
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Let us mention that Lemma 4.3.10 is a particular case of [CGP, Proposition A.8.12].
We provide a direct, elementary proof below.

Proof. Smoothness is a general fact, since M is linearly reductive.
Next, let us assume that Z is not reductive: since Z is contained in T , there is some root
γ of LieG such that

gγ ⊂ LieU, where U ··= Ru(Z).

Since M is linearly reductive, we have that LieZ is the fixed point subalgebra (LieG)M .
In particular, if the root subspace associated to γ is contained in LieZ, then the same
holds for −γ. Moreover, U being normal in Z implies that LieU is a p-Lie ideal of LieZ,
hence

[gγ, g−γ] ⊂ LieU.

On the other hand, the above bracket is nonzero and contained in the Lie algebra of the
maximal torus T (thanks to the assumption that G is simply connected, we can use a
Chevalley basis and apply Lemma 3.1.5). This gives a contradiction. □

4.3.4. Type G2. Let us consider a group of type G2: we begin with the case of
characteristic 3 because the edge hypothesis is satisfied, and we once again get that all
parabolic subgroups are of quasi-standard type. Then we move on to characteristic 2,
where a more exotic behavior takes place.

4.3.4.1. Characteristic three. Let G be of type G2 in characteristic 3.

Proposition 4.3.11. Let P ⊂ G be a parabolic subgroup with

Pred = B = Pα1 ∩ Pα2 .

Then P is the pull-back of a parabolic subgroup of standard type by an isogeny with no
central factor; in particular, (4.1.1) is an equality.

Proof. The first step consists in taking the quotient of P by the kernel of the iterated
Frobenius of largest possible height. Hence we can make the hypothesis that the Frobenius
kernel 1G is not contained in P , which is equivalent to assuming that the Lie algebra of
P is not the whole of LieG. Looking at structure constants, we see that

[g−3α1−2α2 , gγ] = g−3α1−2α2+γ,

for any positive root γ such that −3α1 − 2α2 + γ is still a root. Hence, if g−3α1−2α2

intersects LieP , then all other negative root subspaces do and we get LieP = LieG.
Thus by our assumption, we necessarily have

g−3α1−2α2 ∩ LieP = 0.(4.3.19)

Moreover, by taking the quotient via the very special isogeny π, which exists because we
are in characteristic 3, we can assume that N ··= NG is not contained in P . In other words,
we make the hypothesis that at least one root subspace associated to a short negative
root does not intersect LieP . Let us notice that

[g−2α1−α2 , gα1 ] = g−α1−α2 , [g−α1−α2 , gα2 ] = g−α1 , [g−α1 , g−α1−α2 ] = g−2α1−α2 ,
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because all three structure constants are equal to ±2. Thus, if the root subspace associated
to −2α1 or to α1 − α2 intersects LieP , then LieN is contained in LieP and we have a
contradiction. Hence we are in the following situation, where l, r, s are non-negative
integers and we place next to each negative root γ the height of the intersection P ∩ Uγ.

α1l

α2

sr
0 0

0

Finally, we can also say that r must be equal to zero, because

[g−3α1−α2 , gα1 ] = g−2α1−α2 .

This means that
P = lGP

α1 ∩ sGP
α2 ,

with one among l and s which vanishes (because otherwise P would contain 1G). □

4.3.4.2. Characteristic two. Let G be of type G2 in characteristic 2. Let us briefly
recall some results which are shown in Section 3.2. First, there exist two maximal p-Lie
subalgebras of LieG containing LiePα1 , namely:

h ··= LiePα1 ⊕ g−2α1−α2 and l ··= LiePα1 ⊕ g−α1 ⊕ g−α1−α2 .

Lemma 4.3.12. The 2-Lie subalgebras of LieG containing strictly LiePα1 are exactly h

and l.

Next, we consider the subgroups H and L of the group G, defined as being of height
one with Lie algebra respectively equal to

LieH ··= g−2α1−α2 and LieL ··= g−α1 ⊕ g−α1−α2 .(4.3.20)

Finally, set
Ph ··= ⟨H,Pα1⟩ and Pl ··= ⟨L, Pα1⟩.

This defines two parabolic subgroups which cannot be described as (ker ξ)Pα1 for some
isogeny ξ with source G, due to the fact that LieG is simple (see [Str, 4.4]).

These two exotic subgroups are enough to complete the classification in type G2. This is
proven in Proposition 3.2.26; we recall here the precise statement for reference.
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Proposition 4.3.13. Let G be of type G2 in characteristic two.
Then all parabolic subgroups of G having Pα1 as reduced part are either of standard type,
or obtained from Pl and Ph by pulling back with an iterated Frobenius homomorphism.

Proposition 4.3.14. Let P ⊂ G be a parabolic subgroup with

Pred = B = Pα1 ∩ Pα2 .

Then (4.1.1) is an equality.

Proof. Taking the quotient of P by the highest possible Frobenius kernel allows us
to assume (4.3.19), as in the previous proof. The situation is summarized below: we place
next to each negative root γ the height of the intersection P ∩ Uγ, so that l,m, n, r, s are
non-negative integers on which we now determine some conditions.

α1l

α2

sr
m n

0

First, we notice that

[g−3α1−α2 , g−α2 ] = [g−2α1−α2 , g−α1−α2 ] = g−3α1−2α2

because the two structure constants are respectively ±1 and ±3. Thus, one among r and
s must vanish, and analogously for m and n.

• Assume that r vanishes and n does not, which yields that m is equal to zero. Moreover,
l is nonzero because

[g−α1−α2 , gα2 ] = g−α1 .

A direct computation, involving the root subgroups computed in Chapter 6, Remark 6.2.1,
shows that for a, b ∈ Ga,

(u−α1(a), u−α1−α2(b)) = u−3α1−α2(a
2b)u−3α1−2α2(ab

2).(4.3.21)

By [Wen, Proposition 8], if l is bigger than 1, then the unipotent infinitesimal part U−
P ,

whose definition is recalled in (2.3.1), has nontrivial intersection with U−3α1−α2 . This
yields that r is nonzero, which contradicts our assumption. On the other hand, if n ≥ 2,
then P has nontrivial intersection with U−3α1−2α2 , contradicting (4.3.19). This means that
l = n = 1, thus for any s we get

P = Pl ∩ sGP
α2 .
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• Next, assume that both r and n vanish. If m is also zero, then

P = lGP
α1 ∩ Pα2 or P = Pα1 ∩ sGP

α2

which are standard. Thus we can assume m to be nonzero. Another direct computation
shows that for b ∈ Ga,

(uα1(1), u−2α1−α2(b)) = uα2(b
2)u−3α1−2α2(b),(4.3.22)

hence if m ≥ 2, then P has again nontrivial intersection with U−3α1−2α2 . Moreover, l must
vanish too, because

[g−α1 , g−2α1−α2 ] = g−3α1−α2

hence if l does not vanish then the same holds for r. This gives for any s,

P = Ph ∩ sGP
α2 .

• We are left with the case where r is nonzero, which implies that s must vanish. From
the equality

[g−α1−α2 , gα1 ] = g−α2 ,

we deduce that n is also equal to zero. Finally, a direct computation shows

(u−3α1−α2(a), uα1(b)) = u−2α1−α2(a)u−α1−α2(b)u−α2(b).

By [Wen, Proposition 8], if r is nonzero then we have that u−α2(b) belongs to P for
b ∈ α2; however this is a contradiction with the fact that s is equal to zero. □





CHAPTER 5

Geometry of rational projective homogeneous varieties

Abstract. Using the Białynicki-Birula decomposition, we give a combinatorial descrip-
tion of classes of divisors and of curves on rational homogeneous projective varieties.
Then we describe a family of examples of new such varieties of Picard rank two. We
conclude with a few results on their geometry; among those, we show that there are only
finitely many non-isomorphic homogeneous varieties of a prescribed dimension such that
their anti-canonical bundle is globally generated.

5.1. Curves and divisors on flag varieties

We give here an explicit basis for 1-cycles and divisors modulo numerical equivalence
on a flag variety X = G/P of any Picard rank, with stabilizer P not necessarily reduced.
We do so by describing the cells of an appropriate Białynicki-Birula decomposition of X
in terms of the root system of G and of the root system of a Levi subgroup of the reduced
part of P .

5.1.1. Białynicki-Birula decomposition of a G-simple projective variety.
Flag varieties are smooth, projective and equipped with a G-action with a unique closed
orbit, hence they form a particular class of simple G-projective varieties (for short, G-
simple varieties), as in [Bri2]. Let us review here the main definitions and results concern-
ing the Białynicki-Birula decomposition of such varieties, then specialize to flag varieties.
The original work on the subject is [BB]; for a scheme-theoretic statement see [Mil, The-
orem 13.47].

Let us consider a smooth G-simple variety X and fix a co-character λ : Gm ! T such
that

B = {g ∈ G : lim
t!0

λ(t)gλ(t−1) exists in G},

which is equivalent to the condition that ⟨γ, λ⟩ > 0 for all γ ∈ Φ+. This implies in
particular that the set of fixed points under the Gm-action induced by λ coincides with
the set XT of T -fixed points. Recall that the fixed-point scheme XT is smooth, see
for example [Mil, Theorem 13.1]. For any connected component Y ⊂ XT there are an
associated positive and a negative stratum, defined as

X+(Y ) ··= {x ∈ X : lim
t!0

λ(t) · x ∈ Y } and X−(Y ) ··= {x ∈ X : lim
t!0

λ(t−1) · x ∈ Y },

equipped with morphisms

p+ : X+(Y ) ! Y, x 7! lim
t!0

λ(t) · x,

p− : X−(Y ) ! Y, x 7! lim
t!0

λ(t−1) · x.

115
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For more details on the definition of limits and strata, see for example [May].

Theorem 5.1.1 (Białynicki-Birula decomposition). Let X be a smooth G-simple pro-
jective variety. Then the following hold:

• The variety X is the disjoint union of the positive (resp. negative) strata as Y
ranges over the connected components of XT .

• The morphisms p+ and p− are affine bundles.
• The strata X+(Y ) and X−(Y ) intersect transversally along Y .

Let us remark that the assumption on λ implies that positive strata are B- invariant,
while negative strata are B−-invariant. In particular, the unique open positive stratum
X+ is equal to X+(x+) where x+ is the unique B−-fixed point, and analogously the unique
open negative stratum X− is equal to X−(x−) where x− is the unique B-fixed point. Let
us recall here the main results from [Bri2] in the case where X is smooth.

Theorem 5.1.2. Let X be a smooth G-simple projective variety, x− its B-fixed point,
X− = X−(x−) the open negative cell and D1, . . . , Dr the irreducible components of X\X−.

(1) D1, . . . , Dr are globally generated Cartier divisors, whose linear equivalence classes
form a basis of Pic(X).

(2) Every ample (resp. nef) divisor on X is linearly equivalent to a unique linear
combination of D1, . . . , Dr with positive (resp. non-negative) integer coefficients.
In particular, rational and numerical equivalence coincide on X i.e. the natural
map Pic(X) ! N1(X) is an isomorphism.

(3) There is a unique T -fixed point x−i such that Di is the closure of X−(x−i ). Moreover,
x−i is isolated.

(4) Consider the B-invariant curve Ci ··= B · x−i . Then Cj intersects transversally
Dj and no other; in particular, the intersection number satisfy

Di · Cj = δij.

(5) The convex cone of curves NE(X) is generated by the classes of C1, . . . , Cr, which
form a basis of the rational vector space N1(X)Q.

5.1.2. Białynicki-Birula decomposition of flag varieties. Let us now specialize
to our case i.e. interpret the results of the above Section in terms of root systems. The
first step consists in recalling the Bruhat decomposition of a flag variety with reduced
stabilizer, i.e. X = G/PI where I ⊂ ∆ is a basis for the root system of a Levi subgroup of
PI . In particular, for a simple root α the subgroup Pα - which has been widely used in the
previous Sections - coincides with P∆\{α}. Let us fix a set of representatives ẇ ∈ NG(T ),
for w ∈ W = W (G, T ) and let us recall the following (see [Spr, 8.3]).

Theorem 5.1.3 (Bruhat decomposition). Let G ⊃ B ⊃ T be a reductive group, a
Borel subgroup and a maximal torus, and W = W (G, T ). Then the following hold.

(1) G is the disjoint union of the double cosets BwB, for w ∈ W .
(2) Let Φw be the set of positive roots γ such that w−1γ is negative. Then

Uw ··=
∏
γ∈Φw

Uγ
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is a subgroup of the unipotent radical of B, with the product being taken in any
order.

(3) The map Uw ×B ! BwB given by (u, b) 7! uẇb is an isomorphism of varieties.

This gives a decomposition of G/B into the disjoint union of the cells BwB/B, which
are isomorphic to Uw i.e. to affine spaces of dimension equal to the length of w. Since
we want to work with G/PI instead of G/B, we shall not consider the whole Weyl group
but its quotient by the subgroup WI generated by the reflections corresponding to simple
roots in I.

Lemma 5.1.4. In any left coset of WI in W there is a unique element w characterized
by the fact that wI ⊂ Φ+ or by the fact that the element w is of minimal length in wWI .

Proof. See [BT, Proposition 3.9]. □

We denote the set of such representatives as W I . In particular, denoting w0 and w0,I

the element of longest length of W and WI respectively, then wI0 ··= w0w0,I is the element
of longest length in W I .

Proposition 5.1.5 (Generalized Bruhat decomposition). For a fixed I ⊂ ∆, the group
G is the disjoint union of the double cosets BwPI , where w ranges over the set W I .

In order to get a similar statement as (3) in Theorem 5.1.3, let us consider for any
w ∈ W I the sets

ΦI
w
··= {γ ∈ Φ+ : w−1γ /∈ Φ+ and w−1γ /∈ ΦI},(5.1.1)

Φw,I ··= Φw\ΦI
w = Φw ∩ Φ+

I .(5.1.2)

Lemma 5.1.6. With the above notation, let us fix w ∈ W I .

(1) The groups Uγ, with γ ranging over ΦI
w (resp. Φw,I) generate two subgroups of

the unipotent radical of B,

U I
w =

∏
γ∈ΦI

w

Uγ and Uw,I =
∏

γ∈Φw,I

Uγ,

with the product being taken in any order.
(2) The product map U I

w × PI ! BwPI given by (u, h) 7! uẇh is an isomorphism of
varieties.

Proof. To prove (1), let us recall that for any pair of roots γ, δ ∈ Φ there exist
constants cij such that

(uγ(x), uδ(y)) =
∏

i,j>0, iγ+jδ∈Φ

uiγ+jδ(cijx
iyj), for all x, y ∈ Ga

(see [Spr, Proposition 8.2.3]). If γ and δ are both in ΦI
w, then w−1(iγ+jδ) is still negative

and not belonging to ΦI , hence by (5.1.1) the product of the root subgroups with roots
ranging over ΦI

w is a group. The same reasoning holds for the second product.
Moving on to (2), let us consider an element x ∈ BwPI . Let us fix an order on ΦI

w =

{γ1, . . . , γl} and on Φw,I = {δ1, . . . , δm} . By Theorem 5.1.3, there are a unique w′ ∈ WI ,
a unique u = uγ1(x1) · . . . · uγl(xl) ∈ U I

w, a unique u′ = uδ1(y1) · . . . · uδm(ym) ∈ Uw,I and
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a unique b ∈ B such that x = uu′ẇẇ′b ∈ Bww′B. Moreover, by [Spr, 8.1.12(2)], there
exist constants ci ∈ k such that

u′ẇ =

(
m∏
i=1

uδi(yi)

)
ẇ = ẇ

(
m∏
i=1

ẇ−1uδi(yi)ẇ

)
= ẇ

m∏
i=1

uw−1δi(ciyi) =: ẇu′′

Since w−1δi is in ΦI for all i, the product u′′ is an element of PI , as well as h ··= u′′ẇ′b

because w′ ∈ WI . This gives a unique way to write x as product uẇh for some u ∈ U I
w

and h ∈ PI . □

Next, let us go back to our original setting: consider a sequence G ⊃ P ⊃ Pred = PI ⊃
B ⊃ T and look at the map

X̃ ··= G/PI G/P =: X,σ

in order to relate the geometry of X to that of X̃. The morphism σ is finite, purely
inseparable and hence a homeomorphism between the underlying topological spaces. Let
us denote as õ ∈ X̃ and o ∈ X the respective base points.

The decomposition of Proposition 5.1.5 allows us to express the variety X̃ as the dis-
joint union of the cells BwPI/PI = Bwõ as w ∈ W I . Let us remark that W I corresponds
to the set of isolated points under the T -action, i.e. that

(X̃)T = {wõ : w ∈ W/WI}

and the same holds for X. It is hence natural if such a decomposition coincides with the
Białynicki-Birula decomposition of Theorem 5.1.1. This is useful because the advantage
of the first one is that it is more explicit and easier to manipulate, while the second can
be defined also on X, independently of the smoothness of the stabilizer. Let us denote as
X̃+
w (resp. X+

w ) the positive Białynicki-Birula strata associated to the T -fixed point wõ
(resp. wo), and the analogous notation for negative strata.

Lemma 5.1.7. For any w ∈ W/WI , we have

Bwõ = X̃+
w and Bwo = X+

w .

Proof. For the first equality, wõ belongs to X̃+
w because it is a T -fixed point. Moreover,

positive strata are B-invariant which means that Bwõ ⊆ X̃+
w . The other inclusion comes

from the fact that X̃ can be expressed as the disjoint union of both the strata of the two
decompositions with the same index set.
Next, let us consider Bwo = σ(Bwõ), which equals σ(X̃+

w ) by what we just proved.
The inclusion σ(X̃+

w ) ⊂ X+
w comes from the fact that σ being T -equivariant respects the

Białynicki-Birula decomposition, while the other inclusion is due to the fact that⊔
w∈W I

Bwo = X =
⊔

w∈W I

X+
w .

because σ is an homeomorphism. □

Remark 5.1.8. How can we visualize the morphism σ on cells? By Proposition 5.1.5,
the Bruhat cell associated to w ∈ W I in X̃ is an affine space of dimension l, equal to
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the cardinality of ΦI
w = {γ1, . . . , γl}. Let us consider the integers ni, which we recall are

associated to the roots in ΦI
w via the equality

U−γi ∩ P = u−γi(αpni ).

If we denote as Yi the coordinate on the affine line given by Uγi , then the morphism σ

acts on such a line as an ni-th iterated Frobenius morphism, hence its behavior on the
cell Bwõ = X̃+

w can be summarized in the following diagram

U I
w ≃ X̃+

w = Spec k[Y1, . . . , Yl] ≃ Al G/PI

X+
w = Spec k[Y pn1

1 , . . . , Y pnl

l ] ≃ Al G/P

σ σ

We reinterpret all the ingredients of Theorem 5.1.2 in order to specialize and state
it in the case of flag varieties. First, X = G/P is indeed smooth, projective and G-
simple. Its unique B-fixed point is x− = o the base point, which gives as open cell
B−o = Bw0o = BwI0o = X+

wI
0
. Moreover, the irreducible components of X\XwI

0
are the

closures of the strata of codimension one, i.e. the cells Bwo with w ∈ W I of length
l(w) = l(wI0) − 1. Those are exactly of the form w = w0sαw0,I for α ∈ ∆\I, since for
α ∈ I we have that w0sα is in the same left coset as wI0. In particular, the divisors in the
statement of Theorem 5.1.2 are

Dα = Bw0sαw0,Io = Bw0sαo = B−sαo, for α ∈ ∆\I,

hence the unique T -fixed point x−α such that Dα is the closure of X−(x−α ) is x−α = sαo,
and we are led to consider the B-invariant curves

Cα = Bx−α = Bsαo.

We are now able to reformulate the results of Section 5.1.1 in the following:

Theorem 5.1.9. Let us consider a sequence G ⊃ P ⊃ Pred = PI ⊃ B ⊃ T and let
X = G/P with base point o and open cell X− = B−o. Then the following hold:

(1) The irreducible components of X\X− are the closures Dα of the negative cells
associated to the points sαo for α ∈ ∆\I. Moreover, they are globally generated
Cartier divisors, whose linear equivalence classes form a basis for Pic(X).

(2) Every ample (resp. nef) divisor on X is linearly equivalent to a unique linear
combination of the Dα’s with positive (resp. non-negative) integer coefficients.
In particular, the natural map Pic(X) ! N1(X) is an isomorphism.

(3) Considering the B-invariant curves Cα’s defined above, the intersection numbers
satisfy Dα · Cβ = δαβ.

(4) The convex cone of curves NE(X) is generated by the classes of the Cα’s, which
form a basis of the rational vector space N1(X)Q.
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5.2. Contractions

Theorem 5.1.9 tells us in particular that the Picard group of a flag variety X = G/P

is a free Z-module of rank the number of simple roots not belonging to the root system
of a Levi factor of Pred. This gives a motivation to the study, done in Chapter 3, of
parabolic subgroups having maximal reduced part. In order to move on to higher ranks
by exploiting the previous results in rank one, we adopt the following strategy : we define
a finite collection of morphisms which behave nicely, arise naturally from the variety X,
and whose targets are homogeneous spaces of Picard rank one. As a first step towards
such a construction, we recall the notion of a contraction between varieties and some of
its properties.

Definition 5.2.1. Let X and Y be varieties over an algebraically closed field k. A
contraction between them is a proper morphism f : X ! Y such that f ♯ : OY −! f∗OX

is an isomorphism.

We will make use of the following results, stated here for reference. They correspond
respectively to [Deb, Proposition 1.14] and to [Bri3, 7.2].

Theorem 5.2.2. Let f : X ! Y be a contraction between projective varieties over
k. Then f is uniquely determined, up to isomorphism, by the convex subcone NE(f) of
NE(X) generated by the classes of curves which it contracts. Moreover, if Y ′ is a third
projective variety and f ′ : X ! Y ′ satisfies NE(f) ⊂ NE(f ′), then there is a unique
morphism ψ : Y ! Y ′ such that f ′ = ψ ◦ f .

X Y

Y ′

f

f ′

ψ

Theorem 5.2.3 (Blanchard’s Lemma). Let f : X ! Y be a contraction. Assume that
X is equipped with an action of a connected algebraic group G. Then there exists a unique
G-action on Y such that the morphism f is G-equivariant.

The following construction is done here for any globally generated line bundle and is
then applied to OX(Dα) to define the desired family of contractions.

Lemma 5.2.4. Let X be a projective variety over k and L a line bundle over X which is
generated by its global sections. Then

(a) There is a well-defined contraction

f : X −! Y ··= Proj
∞⊕
n=0

H0(X,L⊗n).

(b) The sheaf OY (1) is invertible and ample, and L = f ∗OY (1).
(c) A curve C in X is contracted by f if and only if L · C = 0.

Proof. (a) : Let us denote as S the graded ring on the right hand side and denote
as Sd = H0(X,L⊗d) its homogeneous part of degree d. The scheme X is covered by the
open subsets

Xt ··= {x ∈ X, tx /∈ mxLx} = X\Z(t),
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where t ranges over the nonzero elements of S1, because by hypothesis L is globally
generated. On the other hand, the scheme Y = ProjS is covered by the open subset

D(t) = Spec

(
∞⋃
n=0

H0(X,L⊗nd)

tn

)
,

where t ∈ Sd for some d > 0, by definition of the Proj. This allows to define f via the
inclusion

∞⋃
n=0

H0(X,L⊗nd)

tn
⊂ OX(Xt), for t ∈ Sd.(5.2.1)

Moreover, [Har, II, Lemma 5.14], applied to the coherent sheaf OX and the line bundle
L⊗nd, implies that (5.2.1) is an equality, which gives the condition f∗OX ≃ OY .
(b) : Let us consider the sheaf OY (1) defined as in [Har, II, Proposition 5.11] and let
us fix some global section s ∈ H0(X,L). Since we have the trivialisation L|Xs ≃ sOXs ,
considering sections over Xs gives

H0(Xs,L) =
sn+1OX(Xs)

sn
=

∞⋃
n=0

H0(X,L⊗(n+1))

sn
= H0(D(s),OY (1)).

Next, let V = H0(X,L)∗; since L is globally generated, we have a morphism g : X ! P(V )

such that L = g∗OP(V )(1). Consider the Stein factorisation of g as

X Z P(V )
φ ψ

where the morphism φ satisfies φ∗OX = OZ , while the map ψ is finite. Let M ··=
ψ∗OP(V )(1); then M is an ample invertible sheaf on Z, satisfying L = φ∗M. By the
projection formula, one has

H0(X,L⊗n) = H0(Z,M⊗n) for all n,

which implies that Y = Z and that L = f ∗M. In particular, Y is covered by the D(s),
where s ranges over the nonzero elements of V ∗ = H0(X,L) = S1. By applying again the
projection formula,

H0(D(s),OY (1)) = H0(Xs,L) = H0(D(s),M) for all n,

so we get that M = OY (1), as wanted.
(c) : We just proved that OY (1) is invertible and ample, thus it must have strictly
positive intersection with any non-zero effective 1-cycle. In other words, given a nonzero
class C ∈ NE(X), f∗C = 0 if and only if

0 = OY (1) · f∗C = f ∗OY (1) · C = L · C,

by the projection formula, and we are done. □

Before going back to our particular case, let us prove a criterion for a morphism
between homogeneous spaces to be a contraction.

Lemma 5.2.5. Consider a chain of algebraic groups H ⊂ H ′ ⊂ G over k. The morphism
f : G/H −! G/H ′ is a contraction if and only if H ′/H is proper over k and O(H ′/H) =

k.
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Proof. Let us consider q : G ! G/H and q′ : G ! G/H ′ to be the quotient maps
and m : G×H/H ′ ! G/H the morphism given by the group multiplication and then by
quotienting by H: by [Mil, Proposition 7.15] we have a cartesian square

G×H ′/H G

G/H G/H ′

prG

m q′

f

Since q′ is faithfully flat and prG is obtained as base change of f via such a morphism, f
being proper is equivalent to prG being proper; now, the latter is obtained as base change
of H ′/H ! Spec k via the structural morphism of G, which is also fppf, hence it is proper
if and only if H ′/H is proper over k. This shows the first condition.
Moreover, the formation of the direct image of sheaves also commutes with fppf extensions:
more precisely, applying this to the structural sheaves in our case yields

(q′)∗f∗OG/H = (prG)∗OG×H′/H = OG ⊗OH′/H(H
′/H),

hence by taking (q′∗)
H on both sides one gets

f∗OG/H = OG/H′ ⇐⇒ OH′/H(H
′/H) = k,

which gives the second condition. □

Remark 5.2.6. Let us consider again a fixed parabolic subgroup P . We now construct
a collection of morphisms fα : X ! G/Qα, for α ∈ ∆\I, such that

(1) the target G/Qα is defined in a concrete geometrical way,
(2) each fα is a contraction,
(3) the stabilizer Qα coincides with the smallest subgroup scheme of G containing

both P and Pα: in particular, (Qα)red is a maximal reduced parabolic subgroup,
(4) the collection (fα)α∈∆\I "tells us a lot" about the variety X.

The reason why Qα is not directly defined as being the algebraic subgroup generated
by P and Pα is that this notion does not behave well since P is nonreduced in general.
Let us apply Lemma 5.2.4 to the variety X = G/P and the line bundle L = OX(Dα),
which can be done thanks to Theorem 5.1.9. This gives a contraction

fα : X −! Yα ··= Proj
∞⊕
n=0

H0(X,OX(nDα)).(5.2.2)

By Theorem 5.2.3, there is a unique G-action on Yα such that fα is equivariant. Moreover,
since fα is a dominant morphism between projective varieties, it is surjective, hence the
target must be of the form Yα = G/Qα for some subgroup scheme P ⊆ Qα ⊊ G. We take
this construction as the definition of the subgroup Qα, so that conditions (1) and (2) are
already satisfied. Moreover, by Theorem 5.1.9 and Lemma 5.2.4, a curve C is contracted
by fα if and only if Dα · C = 0, meaning that this map contracts all Cβ for β ̸= α while
it restricts to a finite morphism on Cα. This leaves one more condition to show.

Lemma 5.2.7. The smallest subgroup scheme of G containing both P and Pα is Qα.
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Proof. By definition of Yα we have the inclusion P ⊂ Qα.
Let H be the subgroup scheme of G generated by P and Pα. Since

Pred = PI =
⋂

α∈∆\I

Pα,

the subgroup generated by Pred and Pα is just Pα. Next, consider the quotient map
π̃ : X̃ ! G/Pα and the composition fα ◦ σ : X̃ ! G/Qα: the latter contracts, by the
above discussions, all curves C̃β for β ̸= α, hence NE(π̃) ⊂ NE(fα ◦ σ). Moreover, π̃ is a
contraction by Lemma 5.2.5, because its fiber at the base point is Pα/PI which is proper
and has no nonconstant global regular functions. By Theorem 5.2.2, there exists a unique
morphism φ making the diagram

X̃ = G/Pred G/Pα

X = G/P G/Qα

σ

π̃

φ

fα

commute: this shows Pα ⊂ Qα hence H ⊂ Qα.
Conversely, let us consider the projection π : X ! G/H. We already know by The-
orem 5.1.9 that π̃ contracts all C̃β for β ̸= α; moreover, the square on the left in the fol-
lowing diagram is commutative and its horizontal arrows are both homeomorphisms. This
implies that π contracts all Cβ for β ̸= α. In other words, the inclusion NE(fα) ⊂ NE(π)

holds.

X̃ X G/Qα

G/Pα G/H

σ

π̃

fα

π
ψ

Since fα is a contraction by definition, this gives a factorisation by ψ - again by The-
orem 5.2.2 - which means that Qα ⊂ H. □

Remark 5.2.8. The homogeneous space X is now equipped with a finite number of
contractions fα such that the target of each morphism has Picard group Z, with a unique
canonical ample generator, corresponding to the image of Dα. The inclusion

P ⊆
⋂
α∈∆

Qα(5.2.3)

holds by definition of Qα. If the characteristic is p ≥ 5, by [Wen] there are nonnegative
integers mα for α ∈ ∆\I such that P is the intersection of the mαGP

α, hence

P ⊂ Qα ⊂ mαGP
α

and the inclusion (5.2.3) becomes an equality. Geometrically, this corresponds to saying
that the product map

f ··=
∏
α∈∆

fα : X −!
∏
α∈∆

G/Qα

is a closed immersion, realizing X as the unique closed orbit of the G-action on the target.
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5.3. Examples in Picard rank two

Let us consider a simple simply connected algebraic group G over k, having Dynkin
diagram with an edge of multiplicity equal to the characteristic p ∈ {2, 3}, so that the
definitions and properties of Section 2.5.1.1 apply. In particular, under such assumption
we have the notion of very special isogeny for a simple, simply connected group. Let
us recall that a parabolic subgroup is said to be of standard type if it is of the form
m1GP

α1 ∩ . . . ∩ mrGP
αr for some integers mi and simple roots αi. Analogously a homo-

geneous variety is said to be of standard type if its underlying variety is isomorphic to
some G′/P ′, where P ′ is a parabolic subgroup of standard type.

The main result in this Section is the following, which provides us with a first family
of homogeneous projective varieties (in types Bn, Cn and F4) which are not of standard
type.

Proposition 5.3.1. Let p = 2 and consider a simple, simply connected group G and two
distinct simple roots α and β such that: either G is of type Bn or Cn and the pair (α, β)

is of the form (αj, αi) with i < j < n or j = n and i < n− 1, or G is of type F4 and the
pair (α, β) is one among

(α1, α4), (α2, α1), (α2, α4), (α3, α1), (α3, α4), (α4, α1).

Then the homogeneous space X = G/(rNGP
α ∩ P β) is not of standard type.

First, we give a motivation to the fact that we look for an example in rank two, then
we prove Proposition 5.3.1 in two consecutive steps.

Let us fix a simple root α ∈ ∆. In order to find a parabolic subgroup not of standard
type, the easiest and more natural idea is to consider the very special isogeny πG : G −! G

and the subgroup P ··= NGP
α. Its reduced part Pred = Pα is maximal, but P is not of

the form mGP
α for any m. Indeed, its associated function φP : Φ

+ ! N ∪ {∞} is given
by

γ 7−! ∞ if α /∈ Supp(γ)

γ 7−! 0 if α ∈ Supp(γ) and γ ∈ Φ>

γ 7−! 1 if α ∈ Supp(γ) and γ ∈ Φ<

while the function associated to a parabolic subgroup of standard type satisfies φmGPα(γ) =

m for all roots γ containing α in their support, regardless of their length. There always
exist both a short and a long root containing any simple root α in their support, namely

• in type Bn, Supp(ε1) = Supp(ε1 + ε2) = ∆;(5.3.1)

• in type Cn, Supp(2ε1) = Supp(ε1 + ε2) = ∆;(5.3.2)

• in type F4, Supp(α1 + 2α2 + 3α3 + 2α4) = Supp(α1 + 2α2 + 4α3 + 2α4) = ∆;(5.3.3)

• in type G2, Supp(2α1 + α2) = Supp(3α1 + 2α2) = ∆.(5.3.4)

Let us remark that the above roots can be constructed in a uniform way: they are
respectively the highest short root and the highest (long) root. Thus, we can conclude
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that φP ̸= φmGQ for all m, proving that P is a parabolic subgroup not of standard type.
However, X = G/P is isomorphic as a variety to G/Pα, hence the homogeneous space X
is still of standard type.
The same reasoning applies when one considers the product of a parabolic subgroup of
standard type and of a kernel of a noncentral isogeny with source G: this might define
a new parabolic subgroup, but an homogeneous space which is still of standard type.
Together with Theorem 3.3.2, this implies that it is not possible to find examples of
homogeneous spaces not of standard type having Picard rank one, when the characteristic
satisfies the edge hypothesis. This provides a motivation to the study of the rank two
case, which means considering parabolic subgroups whose reduced part is of the form

Pα ∩ P β

for two distinct simple roots α and β. In such a context we are able to find the desired
class of examples.

Lemma 5.3.2. Let us consider a simple, simply connected group G having Dynkin dia-
gram with an edge of multiplicity p, fix two distinct simple roots α and β and an integer
r ≥ 0. Both the parabolic

P ··= rNGP
α ∩ P β

and its pull-back via the very special isogeny πG : G ! G are not of standard type if and
only if one of the following conditions is satisfied :

(i) G is of type Bn or Cn and the pair (α, β) is of the form (αj, αi) with i < j < n

or j = n and i < n− 1 ;
(ii) G is of type F4 and the pair (α, β) is one amongst

(α1, α4), (α2, α1), (α2, α4), (α3, α1), (α3, α4), (α4, α1).

In particular, this situation can only happen when p = 2.

Proof. Let us take a look at the function

φP : Φ
+ ! N ∪ {∞}

associated to the parabolic P . Recall that it is determined by the equality

U−γ ∩ P = u−γ(αpφ(γ)), γ ∈ Φ+.

Let us compare the numerical function φP to the analogous numerical function φQ, asso-
ciated to some Q = mGP

α∩nGP
β (i.e. a parabolic of standard type), which is necessarily

of this form because Qred = Pred = Pα ∩ P β. Our aim is to find in which cases there is
a contradiction with the equality P = Q. First of all, assuming φP (β) = φQ(β) leads to
n = 0. Now, let us write down the values that φP and φQ assume on all positive roots in
the following table.

α, β ∈ Supp(γ) α ∈ Supp(γ),
β /∈ Supp(γ), γ short

α ∈ Supp(γ),
β /∈ Supp(γ), γ long

β ∈ Supp(γ)

φQ(γ) ∞ m m 0

φP (γ) ∞ r + 1 r 0
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Thus, the two functions are distinct if and only if there exist at least one long root and
one short root containing α and not β in their respective supports. Let us examine each
root system to determine when this is the case.

• If G is of type G2 in characteristic p = 3, then all roots distinct from α1 and α2

contain both simple roots in their support, hence the desired condition is never
satisfied. Thus from now on we can assume that p = 2.

• If G is of type Bn, let α = αj and β = αi for some 1 ≤ i, j ≤ n. A positive
short root is of the form εm = αm + . . . + αn−1 + 2αn for m < n or εn = αn:
hence if j < i then a short root containing α in its support also contains β. Let
us then assume i < j: in this case γ = εj satisfies the condition. Moving on to
long roots, if i < j < n then γ = α = εj − εj+1 is as wanted, while if j = n

then γ = εn−1 + εn = αn + 2αn−1 satisfies the condition when i < n− 1, while if
i = n− 1 then there is no such γ.

• If G is of type Cn, let α = αj and β = αi for some 1 ≤ i, j ≤ n. A positive
long root is of the form 2εm = 2(αm + . . . + αn−1 + αn) for m < n or 2εn = αn:
hence if j < i then a long root containing α in its support also contains β. Let
us then assume i < j: in this case γ = 2εj satisfies the condition. Moving on to
short roots, if i < j < n then γ = α = εj − εj+1 is as wanted, while if j = n

then γ = εn−1 + εn = αn + αn−1 satisfies the condition when i < n − 1, while if
i = n− 1 then there is no such γ. This completes condition (i).

• If G is of type F4, there is no short root containing α1 (resp. α1, resp. α2) in
its support and not containing α2 (resp. α3, resp. α3); moreover, there is no
long root containing α3 (resp. α4, resp. α4) in its support and not containing α2

(resp. α2, resp. α3). This can be seen by directly looking at the list of positive
roots in such a system, recalled at the beginning of Section 3.1.5. The remaining
pairs are listed below, which gives condition (ii).

α β a short γ : α ∈ Supp(γ), β /∈ Supp(γ) a long γ : α ∈ Supp(γ), β /∈ Supp(γ)

α1 α4 α1 + α2 + α3 α1

α2 α1 α2 + α3 α2

α2 α4 α2 + α3 α2

α3 α1 α3 α2 + 2α3

α3 α4 α3 α2 + 2α3

α4 α1 α4 α2 + 2α3 + 2α4

Up to this point we have only shown that the parabolic P is not of standard type if and
only if conditions (i) or (ii) are satisfied. Now, let us consider the pull-back

π−1

G
(P ) = π−1

G
(rNGP

α ∩ P β) = r+1GP
α ∩NGP

β

and compare it with

Q = mGP
α ∩ nGP

β,

analogously as before. This gives in particular, considering a root γ ∈ Φ+ satisfying
α, β ∈ Supp(γ), such that φQ(γ) = min(m,n) for all γ, while φπ−1(P )(γ) is equal to 1 if γ
is short, and equal to 0 if γ is long. To show that these two parabolics cannot coincide, it
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is enough to have both such a long and a short root. This is always the case, as recalled
at the beginning of this Subsection in (5.3.1)- (5.3.3), hence this concludes the proof. □

Lemma 5.3.3. Keeping the above notations, consider two distinct simple positive roots
α and β satisfying one of the conditions of Lemma 5.3.2. Then the parabolic

P ··= rNGP
α ∩ P β

gives a variety X ··= G/P which is not of standard type.

Proof. The reduced part of the parabolic subgroup P is Pred = Pα ∩ P β: by The-
orem 5.1.9, the convex cone of curves of the variety X is generated by the classes of the
curves

Cα = Bsαo and Cβ = Bsβo.

Next, let us consider the two contractions

fα : X −! G/Qα and fβ : X −! G/Qβ

defined by (5.2.2). Clearly, Qβ = ⟨P, P β⟩ = P β is smooth because P ⊂ P β. On the
other hand, let us show that Qα = rNGP

α. Since both P and Pα are subgroups of the
right hand term, the inclusion Qα ⊂ rNGP

α holds. To prove the other inclusion, let us
notice that the hypothesis on α and β, as shown in the proof of Lemma 5.3.2, guarantees
the existence of some short positive root γ containing α and not β in its support. In
particular, this implies that

P ∩ U−γ = (rNGP
α ∩ U−γ) ∩ (P β ∩ U−γ) = u−γ(αpr+1),

hence Qα ∩ U−γ is the image of a Frobenius kernel of height at least equal to r + 1.
By the factorisation of isogenies in Proposition 2.5.12, the only two possibilities are thus
Qα = r+1GP

α and Qα = rNGP
α, which allows to conclude that Qα = rNGP

α. This
means that the product of the contractions

f = fα × fβ : X ↪−! Xα ×Xβ(5.3.5)

is a closed immersion, where Xα (resp. Xβ) is the underlying variety of G/NGP
α (resp.

G/P β). Moreover, these maps are - up to a permutation - uniquely determined by the
variety X, because the monoid NCα ⊕ NCβ ⊂ N1(X) of effective 1-cycles does not de-
pend on the group action on it: the two contractions are uniquely determined by its two
generators and by the fact that the first is a nonsmooth morphism while the second is
smooth.
The following step consists in studying the automorphisms of the varieties X and Xβ.
First, let us consider the group H ··= Aut0X , which is a semisimple adjoint group. Its nat-
ural action on X gives, applying Theorem 5.2.3 to the contractions fα and fβ respectively,
two morphisms

ρα : H −! Aut0Xα
and ρβ : H −! Aut0Xβ

,

which fit into the following commutative diagram.
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Gad Gad ×Gad Aut0Xα
× Aut0Xβ

H

π×id

ρα×ρβ

Let Q ⊂ H be a parabolic subgroup satisfying X = H/Q. Since the variety X has Picard
rank two, by Theorem 5.1.9 the groupH is either simple or a product of two distinct simple
factors H1 ×H2. Let us assume we are in the second case; then the reduced part of Q is
determined by one simple root of H1 and one simple root of H2. By Lemma 4.1.6, there
exist two parabolic subgroups Q1 ⊂ H1 and Q2 ⊂ H2 such that (Q1)red × (Q2)red = Qred,
and such that

Xα = H1/Q1 and Xβ = H2/Q2.

But then the group H would act transitively on the product Xα × Xβ, which gives a
contradiction with the embedding (5.3.5). Thus, the group H must be simple. Next, let
us consider the automorphism group of Xβ: except for a group of type Cn when β = α1,
we can apply Theorem 3.2.3 to the variety Xβ = G/P β since its stabilizer is smooth and
since by Lemma 5.3.2 the pair (Gad, P

β/Z(G)) is not associated to any of the exceptional
pairs. Thus we have

Aut0Xβ
= Gad.

In particular, ρβ is a section of the inclusion of Gad into Aut0X . This implies H = K×Gad

for some subgroup K ⊂ Aut0Xα
. But then, K is contained in the centralizer CH(Gad).

The variety X being homogeneous under Gad, we have that K fixes the base point o of X
(because o is the only fixed point under the Borel subgroup B ⊂ G), thus it must fix all
of X and hence it must be trivial. This means that Aut0X = Gad. We still have to treat
the case G = Sp2n and β = α1, for which Theorem 3.2.3 yields Aut0Xβ

= PGL2n. When
considering Xα, we have

Aut0Xα
= SO2n+1 if α = αj for j < n,

while if α = αn, then
Aut0Xα

= AutSO2n+1 /Pαn = SO2n+2,

again by Theorem 3.2.3. In both cases, the automorphism group of Xα embeds into
SO2n+2, and we get a commutative diagram as below.

Gad = PSp2n SO2n+1×PSp2n SO2n+2×PGL2n

H ··= Aut0X

π×id

This yields that

Gad ⊂ H ⊂ PGL2n(5.3.6)

and that the group H, up to an isogeny, is also contained in SO2n+1. By pulling back
(5.3.6) to the simply connected cover, we have that Sp2n is contained in the connected
component of the identity of H ′, where H ′ ⊂ SL2n is the preimage of H. By [MT, Table
18.2], the subgroup Sp2n is maximal among smooth connected subgroups of SL2n; hence
(H ′)0 is either equal to Sp2n or to SL2n. This still allows for H = PGL2n, but the latter
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for dimension reasons cannot embed up to an isogeny into SO2n+2. Thus, we get that
H = PSp2n = Gad also in this case.
Finally, let us consider another action of a semisimple, simply connected G′ onto the
variety X; realizing it as a quotient G′/P ′ for some parabolic subgroup P ′. Since it is
simply connected, G′ is either simple or the direct product G(1) × · · · × G(l) where each
G(i) is simple.
• If G′ is simple, then its action on X induces a morphism G′ −! Aut0X = Gad, which is
in particular an isogeny. By Proposition 2.5.12, this morphism can be factorised as

G′ G Aut0X or G′ G Aut0X ,
Fm Fm◦π

where the second possibility only can happen whenever G satisfies the edge hypothesis.
The stabilizer of the G′-action is the preimage of the stabilizer of the G-action via such
an isogeny, hence it is either of the form mGP for some m or of the form mGπ

−1(P ).
Now, a parabolic Q is of standard type if and only if mGQ is for any integer m, since the
associated functions satisfy φQ(γ) + m = φmGQ(γ). This means that P ′ is of standard
type if and only if P (resp. π−1(P )) is. This remark, together with Lemma 5.3.2 allows
us to conclude that, due to our choice of roots α and β, P ′ is still a parabolic subgroup
not of standard type.
• If G′ = G(1) × · · · ×G(l) is not simple, consider the morphism

G(1) × · · · ×G(l) G Gad
ϕ

determined by the action: then H ··= kerϕ is a normal subgroup of G′ and the image of
ϕ is simple, thus H is necessarily of the form

H =
∏
i ̸=i0

G(i) ×K, for some K ⊂ Z(G(i0)),

thus K is trivial because the quotient G is also simply connected. In particular, denoting
as P(i0)

··= P ′ ∩G(i0), we have

X = G′/P ′ = G′/

(∏
i ̸=i0

G(i) × P(i0)

)
= G(i0)/P(i0)

Applying the reasoning above to G(i0) instead of G′ leads to the conclusion that the
associated function of P(i0) is not of standard type, hence the same is true for the stabilizer
P ′ =

∏
i ̸=i0 G(i) × P(i0). □

Notice that, except for the group of type G2 in characteristic 2, Lemma 5.3.3 covers
the classification of all homogeneous spaces of Picard rank two; thanks to Theorem 4.1.1.
Indeed, Proposition 2.5.12 implies that one of the two kernels must be contained in the
other, hence up to permuting α and β the inclusion kerψ ⊂ kerφ holds. Taking the
quotient by kerψ allows to assume either P = rGP

α ∩ P β, which is the standard type
case, or P = rNGP

α ∩P β for some r ≥ 0. The latter gives a variety not of standard type
if and only if p = 2 and the above hypothesis on roots is satisfied.
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5.4. Geometric consequences in all ranks

Let us start by mentioning one immediate consequence of the complete classification
of parabolic subgroups, stated in Theorem 4.1.1. This main result, together with the case
of maximal reduced part (see Theorem 3.3.2) implies the following.

Corollary 5.4.1. Except for a group of type G2 in characteristic 2, any parabolic subgroup
is of quasi-standard type.

For the G2 case, two exotic families of parabolic subgroups do occur: see Proposi-
tion 3.2.26 for more details.

The complete classification of non-reduced parabolic subgroups now allows us to start
tackling a wide number of questions on the geometric properties of the corresponding
homogeneous spaces. For instance, let us mention the class of SL3-homogeneous hyper-
surfaces Xm in P2 ×P2, given by the equations

x0y
pm

0 + x1y
pm

1 + x2y
pm

2 = 0,

already cited in Example 2.3.14; these show that the varieties G/P are in general not
Fano, since Xm is not Fano if pm > 3. In [Lau1, Proposition 3.1], the canonical bundle
is computed without assumption on the group nor the characteristic.

Let us move on to investigating some geometric properties of rational projective ho-
mogeneous spaces. In order to do it, we make use of the family of contractions of maximal
relative Picard rank with source X = G/P , denoted

fα : X −! G/Qα = G/⟨P, Pα⟩, for α ∈ ∆\I,

which are defined in (4.1.3). Those morphisms are entirely determined, up to a permuta-
tion, by the variety X: see Section 5.1 for more details.

Remark 5.4.2. Considering the underlying varieties, Theorem 4.1.1 implies that the
product of the contractions fα realises any rational homogeneous space X as a closed
subvariety of the product

X = G/P ↪−!
∏

α∈∆\I

G/Qα(5.4.1)

By Theorem 3.1.1, each G/Qα is either isomorphic to a flag variety having as stabilizer a
maximal reduced parabolic (hence defined over Z) or, in the case of G2 and characteristic
2, it can be isomorphic to the variety

X ··= G2/Pl.

The latter is described in Proposition 3.2.18 as being a general hyperplane section of the
Sp6-homogeneous variety of isotropic 3-dimensional subspaces in a 6-dimensional vector
space.

Corollary 5.4.3. Every ample line bundle on X = G/P is very ample.
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Before proving this statement, let us briefly recall what ampleness on X looks like:
thanks to the Białynicki-Birula decomposition, there is an explicit basis of the Picard
group of X, given by the Schubert divisors Dα defined in (4.1.2). In Section 5.1, we show
that a line bundle on X is ample if and only if it writes as a linear combination of the
Dαs with strictly positive coefficients. In particular, from Corollary 5.4.3 we can deduce
that X has a minimal embedding into projective space as

X ↪−! P(H0(X,D)∨), D ··=
∑
α∈∆\I

Dα.

Proof. (of Corollary 5.4.3) When the stabiliser P is reduced this is a well-known
fact; it is also true for the exotic variety X above, due to its construction as a general
hyperplane section of a generalised Sp6-flag variety, with respect to the (very) ample
generator of the Picard group. Thus, it holds for any rational projective homogeneous
variety of Picard rank one. The embedding (5.4.1) into the product of the G/Qα is enough
to conclude the analogous statement for any X. □

5.4.1. Stabiliser of contractions: standard type. Let us now compute the sta-
bilizer Qα of each contraction fα of maximal relative Picard rank, in the case of a parabolic
subgroup P of standard type. This shows that parabolics of quasi-standard type - or even
exotic ones in type G2 - can already occur in this context.

Let P be of standard type and r be the Picard rank of G/P ; then there are distinct
simple roots β1, . . . , βr and non-negative integers m1 ≤ . . . ≤ mr satisfying

P = m1GP
β1 ∩ . . . ∩ mrGP

βr .(5.4.2)

Considering the quotient of G by the m1-th iterated Frobenius kernel allows us to assume
that m1 is equal to one, so that the contraction fβ1 associated to β1 is smooth. Let us
denote as

Qi ··= Qβi = ⟨P, P βi⟩
the stabilizer of the target of the contraction associated to βi; in particular,

Q1 = P β1 .

Clearly, by definition Qi is contained in mi
GP βi , however it could a priori be smaller; by

Lemma 4.2.1, the intersection of Qi with U−βi necessarily has height mi. We examine the
different situations that can happen, in order to determine under which conditions Qi is
not of standard type anymore. First, let us introduce the following notation in type G2.

Definition 5.4.4. Let G be of type G2 in characteristic two.
The pullback by an m-th iterated Frobenius morphisms of the height one subgroup L,
whose definition is recalled in (4.3.20), is denoted

mL ··= (Fm)−1L.

Lemma 5.4.5. Let P be a parabolic subgroup of standard type as in (5.4.2), with m1

equal to one.
(1) If G does not satisfy the edge hypothesis and is not of type G2, then each Qi is

standard.
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(2) If G satisfies the edge hypothesis,

Qi = mi−1NP
βi

if and only if all positive long roots containing βi in their support also contain
some βl with ml < mi.

(3) If G is of type G2 in characteristic 2, the only case where a parabolic not of
standard type (with maximal reduced part) appears is when

P = Pα2 ∩ mGP
α1 ,

for which we get one exotic stabiliser, namely

Q1 = m−1LP
α1 .

Proof. (1) Assume G is not of type G2 and does not satisfy the edge hypothesis.
Then by Theorem 3.3.2, the only parabolic subgroup scheme with reduced part P βi and
whose intersection with U−βi has height mi is

mi
GP βi ,

so the latter necessarily coincides with Qi.
(2) Assume G satisfies the edge hypothesis. By Lemma 4.2.1 together with Theorem 3.3.2,
Qi is obtained from its reduced part either by fattening with mi

G or with mi−1N . The
second case can happen if and only if the equality

(P =) mi
GP βi ∩

(⋂
j ̸=i

mj
GP βj

)
= mi−1NP

βi ∩

(⋂
j ̸=i

mj
GP βj

)
(5.4.3)

is satisfied. Let φ and ψ be respectively the function associated to the left and the right
hand term. If the support of γ does not contain βi, then the whole root subgroup U−γ is
contained in P βi , hence

φ(γ) = ψ(γ) = ∞.

Thus we can assume that βi is in the support of γ.
If γ also contains some βl in its support satisfying ml < mi, then the two functions still
coincide on γ. Finally, assume that the support of γ only contains simple roots βl ∈ ∆\I
with ml ≥ mi. If γ is short, then

mi−1N ∩ U−γ

has height equal to mi, hence φ(γ) = ψ(γ) once again. On the other hand, if γ is long
then the intersection above has height mi − 1: this is the only case where the equality
(5.4.3) cannot hold, because

φ(γ) = mi while ψ(γ) = mi − 1.

Summarizing, the parabolic subgroup Qi is not of standard type, and is in particular
equal to

mi−1NP
βi ,

if and only if all positive long roots containing βi in their support also contain some βl
with ml < mi.
(3) The last case to look at is when G is of type G2, the characteristic is p = 2 and the
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Picard rank of G/P is equal to 2.
Let us assume that

P = Pα2 ∩ mGP
α1

for some positive m; then by Lemma 4.2.1 the intersection Q1 ∩ U−α1 has height m,
which means that the root subspace associated to −α1 is contained in LieQ1. Hence by
Lemma 4.3.12, the latter must contain the Lie subalgebra l. This fact, together with the
classification of parabolic subgroups with reduced part Pα1 , given in Proposition 4.3.13,
implies that m−1LP

α1 is contained in Q1. Moreover, the equality

P = Pα2 ∩ m−1LP
α1

holds, because intersecting both sides with U−γ for any positive root γ ̸= α1 gives a trivial
intersection. This shows that

Q1 = m−1LP
α1 .

Thus, in this case we obtain a parabolic which is not of quasi-standard type.
On the other hand, if

P = Pα1 ∩ mGP
α2

for some m, then the intersection Q2 ∩ U−α2 has height m, hence by Theorem 3.3.2 we
have necessarily that

Q2 = mGP
α2

is standard. □

Example 5.4.6. Assume that the rank r is at least equal to two, that the integer mr is
nonzero and that the simple root βr is long. Then Qr = mrGP

βr is of standard type.

Example 5.4.7. A few parabolic subgroups in rank two, with

Pred = Pα ∩ P β,

are listed below: in particular, these examples underline the importance of paying atten-
tion to the duality between the groups of type Bn and Cn.

P type Qα Qβ

Pαn−1 ∩ mGP
αn Bn Qn−1 = Pαn−1 Qn = m−1NP

αn

Pα1 ∩ mGP
αn Cn Q1 = Pα1 Qn = mGP

αn

Pαn ∩ mGP
α1 Cn Qn = Pαn Q1 = m−1NP

α1

Pαn ∩ mGP
α1 Bn Qn = Pαn Q1 = mGP

α1

5.4.2. Existence of smooth contractions. We address the question of whether
a rational projective homogeneous variety admits a smooth contraction. We obtain in
Proposition 5.4.14 a structure result, saying that such a variety can be obtained by iterated
Zariski locally trivial fibrations whose fibers are flag varieties of Picard rank one. Let us
start by considering morphisms of maximal relative Picard rank.

Lemma 5.4.8. Let X be a rational projective homogeneous variety. Then there is a
semisimple, simply connected group G and a parabolic subgroup P of G, satisfying

X = G/P,
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such that for each simple factor of G, its intersection with P does not contain the kernel
of any isogeny with no central factor.

Proof. Let us write the variety X as

X = G′/P ′

for some semisimple and simply connected group G′ and a parabolic subgroup P ′ of G′.
Let H be the subgroup of G′ generated by all normal noncentral subgroups of height one
of G′ which are contained in P ′. Then we can write

X = (G′/H)/(P ′/H) =: G/P.

The group G is still simply connected and the parabolic subgroup P is as wanted. □

The question of the existence of a smooth contraction is now related to finding some
simple root α, not belonging to the Levi subgroup of the reduced part of P , such that the
stabiliser Qα is reduced (hence, smooth).

Remark 5.4.9. If P ′ is a parabolic subgroup of quasi-standard type ofG′, then Lemma 5.4.8
can be illustrated in a simpler way as follows. Let

P ′ =
r⋂
i=1

(ker ξi)P
βi ,

where r is the Picard rank of X and the ξi are isogenies with no central factor, uniquely
determined as in Theorem 3.3.2. Moreover, let us order them such that

ker ξ1 ⊆ . . . ⊆ ker ξr,

which can be done thanks to Remark 2.5.13. Then the subgroup H of G generated by all
normal noncentral subgroups of height one contained in P is

H = ker ξ1.

Proposition 5.4.10. Let G be simply connected and X = G/P be such that P contains
no kernel of isogenies with no central factor.
Then there is a simple root α not belonging to the Levi subgroup of Pred such that

Qα = Pα

if and only if P is of quasi-standard type.

Proof. (1): Let us assume that P is of quasi-standard type (which we recall is always
the case except for a group of type G2 in characteristic two). By Remark 5.4.9, we can
write

P = Pα ∩ (ker ξ)P ′

for some simple root α and an isogeny ξ with no central factor. Then Qα is equal to Pα,
which in particular means that

fα : X = G/P −! G/Pα

is a smooth contraction.
(2): Let us assume that G is of type G2, that p = 2 and that P is not of quasi-standard
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type. Since by assumption P does not contain the Frobenius kernel of G, it must be of
the form

P = Ph ∩ sGP
α2 or P = Pl ∩ sGP

α2

for some non-negative integer s. In both cases, we have that the height of the intersection
of Q2 and U−α2 is equal to s. Hence

Q2 = sGP
α2

is smooth if and only if s is zero: this cannot happen because

P = Ph ∩ Pα2 = Pα1 ∩ Pα2 = B and P = Pl ∩ Pα2 = 1GP
α1 ∩ Pα2

are both of standard type, which contradicts our assumption.
Thus we have s ≥ 1. Let us consider the subgroup Q1: in the first case, the height of the
intersection of Q1 and U−2α1−α2 is equal to one, which implies that LieQ1 contains h and
finally that

Q1 = Ph

is nonreduced. Analogously, in the second case the height of the intersection of Q1 and
U−α1 is equal to one, which implies that LieQ1 contains l and finally that

Q1 = Pl

is again non-reduced. □

Corollary 5.4.11. Over an algebraically closed field of characteristic p = 2, the isomorph-
ism classes of G2-homogeneous varieties with Picard group of rank 2 are in one-to-one
correspondence with the following parabolic subgroups:

(a) Pα1 ∩ Pα2 = B;
(b) mGP

α1 ∩ Pα2, for m ≥ 1;
(c) Pα1 ∩ mGP

α, for m ≥ 1;
(d) Ph ∩ mGP

α2, for m ≥ 1;
(e) Pl ∩ mGP

α2, for m ≥ 1.

Remark 5.4.12. In the above list, (a), (b) and (c) are of quasi-standard type, while (d)

and (e) are not. This leads to different geometric properties of the homogeneous spaces:
for instance, the variety with stabiliser (a) has two smooth contractions, those in cases
(b) and (c) have one, while those in cases (d) and (e) have none; see Proposition 5.4.14
below.

Before proving Corollary 5.4.11, let us recall that, for the notion of automorphism
group, we use the notation introduced in Remark 2.3.1.

Proof. (of Corollary 5.4.11). Let us write

X = G/P = G′/P ′,

where G is of type G2, P is a parabolic subgroup with reduced part equal to the Borel
B, and G′ is an adjoint semisimple group, such that both actions on X are faithful. By
Theorem 5.2.3 applied to the G′-action, the contraction

fα2 : X −! G/Qα2 ≃ G/Pα2 =: Y
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induces an action of G′ onto Y . By [Dem, Theorem 1], the reduced automorphism group

Aut0Y

of Y is G; in particular, the only semisimple group which can act faithfully and transitively
on Y is the group G, which implies G′ = G. We can thus deduce that P and P ′ are
conjugated in G, because the group of type G2 has no outer automorphisms. Thanks to
our classification of parabolic subgroups, we get the desired list above. □

We now associate to any homogeneous space X - with stabiliser of quasi-standard type
- a canonical fibration which, whenever the stabiliser of X is non-reduced, is realised as
the smooth contraction with minimal relative Picard rank.
Here we focus on isomorphism classes of varieties rather than on conjugacy classes of para-
bolic subgroups, so we start by applying Lemma 5.4.8. Then we repeat this construction
to build from X a finite sequence of Zariski locally trivial contractions, whose fibers are
generalised flag varieties of Picard rank one. Let us start by noticing that the quotient
morphism

G −! G/P

is Zariski locally trivial (and in particular, smooth) if and only if the parabolic subgroup
is reduced.

Remark 5.4.13. Let

X = G/P

with P a parabolic subgroup of quasi-standard, such that for each simple factor of G,
its intersection with P does not contain the kernel of any isogeny with no central factor.
Then there is a unique minimal reduced parabolic subgroup of G containing P , given by

P sm =
⋂

{Pα : α ∈ ∆\I and Qα = Pα}.

Moreover, P can be written in a unique way as

P = P sm ∩ (ker ξ)P ′,(5.4.4)

where ξ is an isogeny with no central factor and P ′ is a parabolic subgroup with reduced
part

P ′
red =

⋂
{Pα : α ∈ ∆\I and Qα ̸= Pα},

such that P ′ does not contain the kernel of any isogeny with no central factor.

Proposition 5.4.14. Let X be a homogeneous projective variety of Picard rank r ≥ 2

whose automorphism group has no G2 factor if the characteristic is 2.
There is a finite sequence of Zariski locally trivial contraction morphisms

gs : Xs −! Ys, 1 ≤ s ≤ r

such that X1 = X, each Ys is a rational projective homogeneous variety of Picard rank
one and Xs+1 is the fiber of gs.
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Proof. Let us write
X = G/P

with P a parabolic subgroup of quasi-standard type; thanks to Lemma 5.4.8 and Propos-
ition 5.4.10, assume that there is some simple root α such that Qα is smooth. Then the
contraction morphism

fα : X −! G/Pα =: Y1

is a Zariski locally trivial contraction, with smooth, connected and projective fiber equal
to

X ′ ··= Pα/P,

The idea is now to replace X by X ′; in order to do this, let us consider the image

Gα ··= im(Pα −! AutX1
)

which is a semisimple adjoint group. Let P be the image of P , then let G′ and P ′ be
respectively the simply connected cover of Gα and the preimage of P in G′. Then we have

X ′ = Gα/P = G′/P ′.

This allows to start again by replacing the variety X by X ′; since the Picard rank of the
fiber decreases by one at each step, this process terminates in r steps. □

Let us mention that if p > 3 then for any parabolic subgroup P the Chow motives of
G/P and of G/Pred are isomorphic, as proven in [Sri, Theorem 1.3]; we wonder whether
this result could be recovered from Proposition 5.4.14.

5.4.3. Anti-canonical bundle and Frobenius splitting. Over an algebraically
closed field of characteristic zero, the anti-canonical bundle on G/P is always globally
generated, and every G/P is a Fano variety. Moreover, there are only a finite number of
isomorphism classes of (projective, rational) homogeneous varieties with a fixed dimen-
sions. All of these statements prove false in positive characteristics.

Example 5.4.15. Let us consider the following family of incidence varieties in the product
of two projective planes:

Xm ··= {xp
m

0 y0 + xp
m

1 y1 + xp
m

2 y2 = 0} ⊂ P2 ×P2,

where m ≥ 0. The group SL3 acts on the first factor with a twisted action via an
m-th iterated Frobenius morphism, and with the standard action on the second factor,
thus preserving Xm. These form an infinite family of non-isomorphic rational projective
homogeneous spaces of dimension 3, which are not Fano if pm > 3.

Nevertheless, the following finiteness property still holds: only a finite number of
homogeneous spaces of fixed dimension are Fano varieties. The idea behind this result is
that, except for a finite number of cases, there is at least one incidence relation in the
embedding

f : X = G/P ↪−!
∏

α∈∆\I

G/Qα

which is twisted too much via the kernel of an isogeny with no central factor.
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For a simply connected semisimple algebraic group G and a parabolic subgroup P , any
line bundle G/P admits a unique G-linearisation. Then one can associate to a line bundle
L a unique character λ, given by restricting the G-action to the fiber over the base point.

Lemma 5.4.16. A line bundle L on G/P with associated character λ is ample if and
only if

(λ, α) > 0 for all α ∈ ∆\I.

Proof. If P is reduced, this holds by [Jan, II.8.5, II.4.4]. In general, let us consider
the finite morphism

σ : G/Pred −! G/P.

The character associated to σ∗L is the restriction of λ to Pred. This, together with the
fact that L is ample if and only if σ∗L is ample, allows us to conclude. □

Lemma 5.4.17. The character associated to the anticanonical bundle of G/P is given by

χ =
∑

γ∈Φ+\ΦI

pφ(γ)γ,

where φ is the associated numerical function to the parabolic subgroup P .

Proof. See [Lau1, Proposition 3.1]: the key point is that in the proof there is no
assumption on the characteristic. □

Theorem 5.4.18. Let n ≥ 1 be a fixed integer.
There are a finite number of isomorphism classes of rational projective homogeneous vari-
eties of dimension n whose character associated to the anti-canonical bundle is dominant
(equivalently, whose anti-canonical bundle is globally generated).

Proof. Such varieties are all of the form

X = G/P

where G is semisimple, simply connected and P is a parabolic subgroup.
Up to replacing the adjoint quotient of G with its image into the automorphism group of
X, we can assume that G acts on X with a finite kernel. In particular, the same is true
for a maximal torus T ⊂ G; this implies that the stabiliser

StabT (x)

is finite for a general point x ∈ X and thus that

n = dimX ≥ dimT = rankG.

Summarizing, we have just proved that the rank of G is bounded by the dimension of
X, which is fixed and equal to n. Any such G is semisimple and simply connected, thus
product of simple factors; there are finitely many isomorphism classes of such groups with
rank less or equal than n, thus there are finitely many possibilities for G.
Next, we fix a Borel subgroup B: we can assume that P contains B and moreover, that
P does not contain the kernel of any isogeny with no central factor.
Step 1: if the reduced part of P is maximal, then by Theorem 3.3.2, X is either isomorphic
to a flag variety with reduced stabiliser, whose character associated to the anti-canonical
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bundle is in particular dominant, or to the exotic variety with stabiliser Pl in type G2 (see
Proposition 4.3.13 for this case): these are a finite number of non-isomorphic varieties, so
we can exclude them.
Step 2: Let us assume that P is quasi-standard: then we have

∆\I = {β1, . . . , βr}, where Pred = PI .

Up to re-arranging β1, . . . , βr, we can find isogenies ξ2, . . . , ξr with source G, uniquely
determined by the conditions

⟨P, P βi⟩ = (ker ξi)P
βi and ker ξ2 ⊆ . . . ⊆ ker ξr,

such that we can write P as

P = P β1 ∩ (ker ξ2)P
β2 ∩ . . . ∩ (ker ξr)P

βr .

We can assume that r ≥ 2, because the case of r = 1 has been treated in Step 1. Let us
consider a positive integer m, big enough such that it satisfies

pm > H ··=
maxα∈∆

∑
α∈Supp(γ) |(γ, α)|

minα∈∆,(γ,α)<0 |(γ, α)|
.(5.4.5)

By Remark 2.5.13, if we exclude a finite number of cases, we can assume that there is
some i < r and some m0 ∈ N such that

ker ξ2 ⊆ . . . ⊆ ker ξi ⊆ m0G and m0+mG ⊆ ker ξi+1 ⊆ . . . ⊆ ker ξr.(5.4.6)

Claim: if P satisfies (5.4.6), then the character χ associated to the anti-canonical bundle
on X is not dominant.
To prove the claim, let us write Φ+\ΦI as the disjoint union of Ψ≥ and Ψ≤, defined as:

Ψ≥ ··= {γ ∈ Φ+\ΦI , Supp(γ) ∩ {β1, . . . , βi} = ∅};
Ψ≤ ··= {γ ∈ Φ+\ΦI , ∃j ≤ i such that βj ∈ Supp(γ)}.

The condition (5.4.6) implies that

φ(γ) ≤ m0 for γ ∈ Ψ≤, φ(γ) ≥ m0 +m for γ ∈ Ψ≥.

Let us fix some βl with l ≤ i and some δ ∈ Ψ≥ such that

(δ, βl) = −s for some s > 0,

which exists thanks to Lemma 5.4.19 below. Let us notice that (γ, βl) > 0 implies that
βl ∈ Supp(γ), hence

(γ, βl) ≤ 0 for all γ ∈ Ψ≥.

On the other hand, let us write Ψ≤ as the disjoint union of

Ψ−
≤ ··= {γ ∈ Ψ≤, (γ, βl) ≤ 0};

Ψ+
≤ ··= {γ ∈ Ψ≤, (γ, βl) > 0} ⊂ {γ ∈ Φ+, βl ∈ Supp(γ)}.

In order to conclude, it is enough to show that

(χ, βl) < 0,(5.4.7)
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By Lemma 5.4.17, we get

(χ, βl) =
∑
γ∈Ψ≤

pφ(γ)(γ, βl) +
∑
γ∈Ψ≥

pφ(γ)(γ, βl) ≤
∑
γ∈Ψ+

≤

pφ(γ)(γ, βl) +
∑
γ∈Ψ≥

pφ(γ)(γ, βl)

≤ pm0

∑
γ∈Ψ+

≤

(γ, βl) + pm0+m
∑
γ∈Ψ≥

(γ, βl) ≤ pm0

∑
γ∈Ψ+

≤

(γ, βl)− pms


Let us consider the integer

N ··=
∑
γ∈Ψ+

≤

(γ, βl) ≤
∑

γ∈Φ+, βl∈Supp(γ)

|(γ, βl)|

Then, by the assumption (5.4.5) we have that

pm > H ≥ N/s,

hence
(χ, βl) ≤ pm0(N − pms) < 0

and we have proved (5.4.7).
Step 3: The last case to treat is the one of a group G of type G2 in characteristic p = 2

and of a parabolic subgroup which is not standard. By Step 1 above, we can assume that
the reduced part of P is the Borel B. By Corollary 5.4.11, the variety X is isomorphic to
exactly one G/P with P belonging to the following list:

B, mGP
α1 ∩ Pα2 , Pα1 ∩ mGP

α, Ph ∩ mGP
α2 , Pl ∩ mGP

α2 , for m ≥ 1.

Clearly, the character of the anti-canonical bundle on the variety G/B is dominant. Next,
let us assume that P is nonreduced and that m ≥ 2, thus excluding a finite number of
varieties: under this assumption, we claim that the character χ is not dominant. In order
to make computations, let us recall that we have

(α1, α1) = 2, (α1, α2) = −3, (α2, α2) = 6.

Let us proceed by a case-by-case analysis, using the canonical bundle formula of Lemma 5.4.17.
• If P = mGP

α1 ∩ Pα2 , then

φ(α1) = m and φ = 0 on Φ+\{α1}.

Thus
(χ, α2) = ((2m + 9)α1 + 6α2, α2) = 9− 3 · 2m < 0.

• If P = Pα1 ∩ mGP
α2 , then

φ(α2) = m and φ = 0 on Φ+\{α2}.

Thus
(χ, α1) = (10α1 + (5 + 2m)α2, α1) = 5− 3 · 2m < 0.

• If P = Ph ∩ mGP
α2 , then

φ(α2) = m, φ(2α1 + α2) = 1 and φ = 0 on Φ+\{α2, 2α1 + α2}.
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Thus

(χ, α1) = ((4 + 8)α1 + (2m + 6)α2, α1) = 6− 3 · 2m < 0.(5.4.8)

• If P = Pl ∩ mGP
α2 , then

φ(α2) = m, φ(α1) = φ(α1 + α2) = 1 and φ = 0 on Φ+\{α2, α1, α1 + α2}.

Then we get the exact same computation as in (5.4.8) and we can conclude. □

Lemma 5.4.19. Let 1 ≤ i < r and consider a partition of simple roots as follows:

∆\I = {β1 . . . βi} ∪ {βi+1 . . . βr}.

Then there is some l ≤ i and some δ ∈ Φ+\ΦI such that

Supp(δ) ∩ {β1, . . . , βi} = ∅ and (δ, βl) < 0.

Proof. Let us fix

ν ∈ {β1, . . . , βi} and µ ∈ {βi+1, . . . , βr},

such that the couple (ν, µ) realises the minimum of the distances between the correspond-
ing nodes in the Dynkin diagram. In particular, there is a segment of minimal length of
nodes J ⊂ ∆, having as extremes the nodes ν and µ; either these two are adjacent, or the
nodes in between them are all simple roots belonging to I. Let us consider the interior

K ··= J\{ν, µ} ⊂ I.

Then, we can set
βl ··= ν and δ ··= µ+

∑
α∈K

α.

Since either µ or some root of K is adjacent to ν, and moreover ν is not in the support
of δ, we can conclude that (δ, βl) is strictly negative. □

Corollary 5.4.20. Let n ≥ 1 be a fixed integer.
There are a finite number of isomorphism classes of projective homogeneous varieties of
dimension n which are Fano.

Proof. This is an immediate consequence of Lemma 5.4.16 above, together with
Theorem 5.4.18. □

Let us conclude by mentioning another direct geometric consequence of the above
Theorem 5.4.18. Namely, we show that finitely many homogeneous spaces of a fixed
dimension are Frobenius split. Let us first recall what this splitting property is and let us
mention some previous results.

Definition 5.4.21. A variety (over an algebraically closed field of characteristic p > 0)
is said to be Frobenius split if the morphism

OX(1) −! (FX)∗OX

splits as a morphism of OX(1)-modules, where

FX : X −! X(1)

is the relative Frobenius morphism of X.
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This property gives important information on the geometry. For instance, if a variety
X is Frobenius split, then vanishing for ample line bundles holds on X. In particular, par-
tial flag varieties (namely, homogeneous varieties with reduced stabilizers) are Frobenius
split.

Lauritzen, in [Lau1, Theorem 5.2], shows the following: if p is strictly greater than
the Coxeter number of G, then the following are equivalent:

• G/P is Frobenius split;
• there is some integer m such that P = mGPred.

Clearly, this is not sufficient for our purposes. In his result, the characteristic is assumed to
be large enough, so that the only parabolics that the statement deals with are of standard
type. However, what is of interest for us is the following result, which is a particular
case of [Lau1, Lemma 1.2] and which needs no hypothesis on the characteristic. Let us
denote as KX the canonical bundle of a variety X. We choose to use additive notation on
line bundles here, in order to reflect the corresponding additive notation of the character
group of P .

Lemma 5.4.22. If the line bundle

−(p− 1)KX

has no global sections, then the variety X is not Frobenius split.

Corollary 5.4.23. Let n ≥ 1 be a fixed integer.
There are a finite number of isomorphism classes of projective homogeneous varieties of
dimension n which are Frobenius split.

Proof. A line bundle on a homogeneous variety G/P admits global sections if and
only if the corresponding character (in the character group of P ) is dominant. By The-
orem 5.4.18, we have the following: for all but finitely many homogeneous varieties of
dimension n, the anti-canonical bundle has no global sections. This yieds that −(p−1)KX

also has no global sections; hence by Lemma 5.4.22 we are done. □
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Appendix

Abstract. We summarize here a description of the group of type G2 as automorphism
group of an octonion algebra, which holds in any characteristic. We then specialize to
characteristic two which is the interesting one for our purposes.

6.1. The embedding of G2 into SO7

Let G be the simple group of type G2, over an algebraically closed field k of charac-
teristic p > 0. The group G can be viewed - as illustrated in [SV], from which we keep
most of the notation - as the automorphism group of an octonion algebra. The latter is
the algebra

O = {(u, v) : u, v are 2× 2 matrices} ,

with basis

e11 =

((
1 0

0 0

)
,

(
0 0

0 0

))
, e12 =

((
0 1

0 0

)
,

(
0 0

0 0

))
,

e21 =

((
0 0

1 0

)
,

(
0 0

0 0

))
, e22 =

((
0 0

0 1

)
,

(
0 0

0 0

))
,

f11 =

((
0 0

0 0

)
,

(
1 0

0 0

))
, f12 =

((
0 0

0 0

)
,

(
0 1

0 0

))
,

f21 =

((
0 0

0 0

)
,

(
0 0

1 0

))
, f22 =

((
0 0

0 0

)
,

(
0 0

0 1

))
,

unit e = (1, 0) = e11 + e22, and which is equipped with a norm

q(u, v) = det(u)− det(v).

Let us write here for reference a table of products of the basis vectors :

⧹ e11 e21 e12 e22 f11 f21 f12 f22
e11 e11 0 e12 0 f11 f21 0 0

e21 e21 0 e22 0 0 0 f11 f21
e12 0 e11 0 e12 f12 f22 0 0

e22 0 e21 0 e22 0 0 f12 f22
f11 0 0 −f12 f11 0 −e21 0 e11
f21 0 0 −f22 f21 e21 0 −e11 0

f12 f12 −f11 0 0 0 −e22 0 e12
f22 f22 −f21 0 0 e22 0 −e12 0

(6.1.1)
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An embedding of the group G into SO7 - which gives an irreducible representation in all
characteristics but two - can be seen as follows: let us consider the G-action on the vector
space

V ··= e⊥ = {(u, v) : det(1 + u)− det(u) = 1} = {(u, v) : u11 + u22 = 0}.(6.1.2)

By [SV, Lemma 2.3.1], a maximal torus of G - with respect to the basis

(e12, e21, f11, e11 − e22,−f12, f21, f22)

of V - acts on V as

Gm
2 ∋ (ξ, η) 7−! diag(ξη, ξ−1η−1, η−1, 1, ξ, ξ−1, η) ∈ GL7

Let us re-parameterize it with ξ = a, η = ab, this gives the torus

Gm
2 ∋ (a, b) 7−! diag(a2b, a−2b−1, a−1b−1, 1, a, a−1, ab) =: t ∈ GL7,

and the basis of simple roots we fix is α1(t) ··= a and α2(t) ··= b. Such a torus acts on V

with the following weight spaces :

V0 = k(e11 − e22), Vα1 = kf12, V−α1 = kf21, Vα1+α2 = kf22,

V−α1−α2 = kf11, V2α1+α2 = ke12, V−2α1−α2 = ke21,

which correspond to 0 and the short roots. Re-arranging V as

V = k(−f12)⊕ kf11 ⊕ ke12 ⊕ k(e11 − e22)⊕ ke21 ⊕ kf22 ⊕ kf21(6.1.3)

gives the maximal torus T

Gm
2 ∋ (a, b) 7−! diag(a, a−1b−1, a2b, 1, a−2b−1, ab, a−1) = t ∈ T ⊂ GL7 .(6.1.4)

This way, T can be identified with the maximal torus in [Hei, page 13]: in his description
of the embedding G ⊂ GL7, the group G is generated by the two following copies of GL2,

θ1 : A 7−!

A Sym2(A) detA−1

A

 and θ2 : B 7−!


detB−1

B̃

1

B

detB

 ,

where

Ã =

(
0 1

1 0

)
tA−1

(
0 1

1 0

)
.

However, in characteristic p = 2, due to the fact that e ∈ V and that G acts on the
quotient W = V/ke, these become the following two copies embedded in GL(W ) = GL6:

θ1 : A 7−!

A A(1) detA−1

A

 and θ2 : B 7−!


detB−1

B

B

detB

 ,

where A(1) denotes the Frobenius twist applied to A.

Lemma 6.1.1. The subgroups θ1(GL2) and θ2(GL2) have root system with positive root
respectively β1 ··= 2α1 + α2 and β2 ··= −3α1 − 2α2.
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Proof. See the computation of the root homomorphisms associated respectively to
β1 and β2, done in Remark 6.2.1 below: these are respectively the intersection of θ1(GL2)

and θ2(GL2) with the upper triangular matrices of GL7. □

Let us remark that {β1, β2} is indeed a basis for the root system of type G2, with
corresponding set of positive roots being

−3α1 − 2α2, α1 − α2, −α2, α2, 3α1 + α2, 2α1 + α2

and with Borel subgroup given by the intersection of G with the upper triangular matrices
in GL7.

6.2. Root subgroups

Let us move on to the explicit computation of some of the root subgroups in type
G2. As before, we will do everything considering the action on a 7-dimensional vector
space - the orthogonal of the identity element of O - so that the computations hold in any
characteristic, then at the end we will summarize what we get in characteristic 2. This
latter part is fundamental in order to study the exotic parabolic subgroups Ph and Pl,
introduced in Definition 3.2.9.

Let us consider the group G acting on the vector space V arranged as in (6.1.3).
Denoting as x0, . . . , x6 the coordinates on V , the norm becomes

q(x) = −x23 − x2x4 − x1x5 − x0x6,(6.2.1)

while the maximal torus T given in (6.1.4) acts on V through this table of characters

1 a2b a−1b−1 a a3b b−1 a2

a−2b−1 1 a−3b−2 a−1b−1 a a−2b−2 b−1

ab a3b2 1 a2b a4b2 a a3b

a−1 ab a−2b−1 1 a2b a−1b−1 a

a−3b−1 a−1 a−4b−2 a−2b−1 1 a−3b−2 a−1b−1

b a2b2 a−1 ab a3b2 1 a2b

a−2 b a−3b−1 a−1 ab a−2b−1 1

(6.2.2)

The idea is the following: we know that - for any root γ ∈ Φ - the root subgroup Uγ ⊂ G

is determined by being the unique subgroup of GL(V ) (resp. GL(W ) in characteristic 2),
which is smooth connected unipotent, is acted on by T via the character γ, and whose ele-
ments are automorphisms of octonions. We will impose some of these necessary conditions
- such as uγ(λ) being an isometry for any λ ∈ Ga - to determine the root homomorphism
uγ : Ga −! Uγ.

• First, let us consider the root α1. By (6.2.2) and the condition for uα1 to be a group
homomorphism, there exist some constants η1, . . . , η5 ∈ k such that for any λ ∈ Ga,
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uα1(λ) acts on V as 

1 0 0 η1λ 0 0 η5λ
2

0 1 0 0 η2λ 0 0

0 0 1 0 0 η3λ 0

0 0 0 1 0 0 η4λ

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


.

Moreover, uα1(λ) being an isometry means, by (6.2.1), that

q(x) = q(uα1(λ) · x) = q(x0 + η1λx3 + η5λ
2x6, x1 + η2λx4, x2 + η3λx5, x3 + η4λx6, x4, x5, x6)

= q(x) +−(2η4 + η1)λx3x6 +−(η5 + η24)λ
2x26 − (η3 + η2)λx4x5,

hence η1 = −2η4, η5 = −η24 and η2 = −η3. This still leaves two independent parameters η3
and η4 instead of one, so let us also impose the condition of uα1(λ) respecting the product
e12f21 = f22 - see (6.1.1) :

(uα1(λ) · e12)(uα1(λ) · f21) =uα1(λ) · (f22)
e12(η

2
4λ

2f12 + η4(e11 − e22) + f21) = η3λe12 + f22

−η4λe12 + f22 = η3λe12 + f22,

implying η3 = −η4. Let us reparametrise the root homomorphism such that η4 = 1: this,
together with an analogous computation for −α1, gives the desired representations, of the
form

uα1 : λ 7!



1 0 0 −2λ 0 0 −λ2
0 1 0 0 λ 0 0

0 0 1 0 0 −λ 0

0 0 0 1 0 0 λ

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


, u−α1 : λ 7!



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

λ 0 0 1 0 0 0

0 −λ 0 0 1 0 0

0 0 λ 0 0 1 0

−λ2 0 0 −2λ 0 0 1


.

• Let us consider the root α2. By (6.2.2) and the condition for uα2 to be a group
homomorphism, there exist some constants η1 and η2 ∈ k such that for any λ ∈ Ga,
uα2(λ) acts on V as

uα2(λ) · x = (x0, x1, x2, x3, x4, η1λx0x5, η2λx1 + x6).

Moreover, the isometry condition means that

q(x) = q(uα2(λ) · x) = −x23 − x2x4 − η1λx0x1 − x1x5 − η2λx0x1 − x0x6

= q(x)− (η2 + η1)λx0x1,
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hence η1 = −η2. As before, we can conclude that the associated root subgroups are of
the form

uα2 : λ 7!



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

−λ 0 0 0 0 1 0

0 λ 0 0 0 0 1


, u−α2 : λ 7!



1 0 0 0 0 λ 0

0 1 0 0 0 0 −λ
0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


.

• Let us consider the root 2α1 + α2. By (6.2.2) and the condition for u2α1+α2 to be a
group homomorphism, there exist some constants η1, . . . , η5 ∈ k such that for any λ ∈ Ga,
u2α1+α2(λ) acts on V as 

1 η1λ 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 η2λ η5λ
2 0 0

0 0 0 1 η3λ 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 η4λ

0 0 0 0 0 0 1


.

Moreover, the isometry condition implies

q(u2α1+α2(λ) · x) = q(x0 + η1λx1, x1, x2 + η2λx3 + η5λ
2x4, x3 + η3λx4, x4, x5 + η4λx6, x6)

= q(x)− (η1 + η4)λx1x6 − (η23 + η5)λ
2x24 − (2η3 + η2)λx3x4 = q(x),

hence η1 = −η4, η5 = −η23 and η2 = −2η3. This still leaves two independent parameters
η3 and η4 instead of one, so let us also impose the condition of u2α1+α2(λ) respecting the
product f22e21 = −f21 :

(u2α1+α2(λ) · f22)(u2α1+α2(λ) · e21) =u2α1+α2(λ) · (−f21)
f22(−η23λ2e12 + η3λ(e11 − e22) + e21) =− η4λf22 − f21

η3λf22 − f21 =− η4λf22 − f21,

implying η3 = −η4, so we can conclude that the associated root subgroups are of the form

u2α1+α2 : λ 7!



1 −λ 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 2λ −λ2 0 0

0 0 0 1 −λ 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 λ

0 0 0 0 0 0 1


, u−2α1−α2 : λ 7!



1 0 0 0 0 0 0

λ 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 −λ 1 0 0 0

0 0 −λ2 2λ 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 −λ 1


.

• Let us consider the root α1 + α2. By (6.2.2) and the condition for uα1+α2 to be a
group homomorphism, there exist some constants η1, . . . , η5 ∈ k such that for any λ ∈ Ga,
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uα1+α2(λ) acts on V as



1 0 0 0 0 0 0

0 1 0 0 0 0 0

η1λ 0 1 0 0 0 0

0 η2λ 0 1 0 0 0

0 0 0 0 1 0 0

0 η5λ
2 0 η3λ 0 1 0

0 0 0 0 η4λ 0 1


.

Moreover, the isometry condition implies

q(x) =q(uα1+α2(λ) · x) = q(x0, x1, η1λx0 + x2, η2λx1 + x3, x4, η5λ
2x1 + η3λx3 + x5, η4λx4 + x6)

=q(x)− (2η2 + η3)λx1x3 − (η4 + η1)λx0x4 − (η22 + η5)λ
2x21,

hence η3 = −2η2, η1 = −η4 and η5 = −η22. Reasoning as in the above cases, let us also
impose the condition of uα1+α2(λ) respecting the product f11f21 = −e21 :

(uα1+α2(λ) · f11)(uα1+α2(λ) · f21) = uα1+α2(λ) · (−e21)
(f11 + η2λ(e11 − e22)− η22λ

2f22)f21 = −e21 − η4λf21

−e21 + η2λf21 = −e21 − η4λf21,

implying η2 = −η4. Reparametrizing and doing an analogous computation for the negative
root allows to conclude that the root subgroups are as follows :

uα1+α2 : λ 7!



1 0 0 0 0 0 0

0 1 0 0 0 0 0

−λ 0 1 0 0 0 0

0 −λ 0 1 0 0 0

0 0 0 0 1 0 0

0 −λ2 0 2λ 0 1 0

0 0 0 0 λ 0 1


, u−α1−α2 : λ 7!



1 0 λ 0 0 0 0

0 1 0 2λ 0 −λ2 0

0 0 1 0 0 0 0

0 0 0 1 0 −λ 0

0 0 0 0 1 0 −λ
0 0 0 0 0 1 0

0 0 0 0 0 0 1


.

• As last computation, let us consider the root −3α1 − 2α2. By (6.2.2) and the
condition for u−3α1−2α2 to be a group homomorphism, there exist some constants η1 and
η2 ∈ k such that for any λ ∈ Ga, u−3α1−2α2(λ) acts on V as

u−3α1−2α2(λ) · x = (x0, x1 + η1λx2, x2, x3, x4 + η2λx5, x5, x6).

The isometry condition implies

q(x) = q(u−3α1−2α2(λ) · x) = −x23 − x2x4 − η2λx2x5 − x1x5 − η1λx2x5 − x0x6

= q(x)− (η2 + η1)λx2x5,



6.2. ROOT SUBGROUPS 149

hence η2 = −η1 and we can conclude that the root subgroups have the following form :

u−3α1−2α2 : λ 7!



1 0 0 0 0 0 0

0 1 λ 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 −λ 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


, u3α1+2α2 : λ 7!



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 −λ 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 λ 1 0

0 0 0 0 0 0 1


.

(6.2.3)
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Remark 6.2.1. Let us recall that in characteristic 2 the group G acts on W = V/ke,
giving an embedding G ⊂ Sp6: we list below what the root subspaces we need become in
that case.

uα1(λ) =



1 0 0 0 0 λ2

0 1 0 λ 0 0

0 0 1 0 λ 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


, u−α1(λ) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 λ 0 1 0 0

0 0 λ 0 1 0

λ2 0 0 0 0 1



uα2(λ) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

λ 0 0 0 1 0

0 λ 0 0 0 1


, u−α2(λ) =



1 0 0 0 λ 0

0 1 0 0 0 λ

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



u2α1+α2(λ) =



1 λ 0 0 0 0

0 1 0 0 0 0

0 0 1 λ2 0 0

0 0 0 1 0 0

0 0 0 0 1 λ

0 0 0 0 0 1


, u−2α1−α2(λ) =



1 0 0 0 0 0

λ 1 0 0 0 0

0 0 1 0 0 0

0 0 λ2 1 0 0

0 0 0 0 1 0

0 0 0 0 λ 1



uα1+α2(λ) =



1 0 0 0 0 0

0 1 0 0 0 0

λ 0 1 0 0 0

0 0 0 1 0 0

0 λ2 0 0 1 0

0 0 0 λ 0 1


, u−α1−α2(λ) =



1 0 λ 0 0 0

0 1 0 0 λ2 0

0 0 1 0 0 0

0 0 0 1 0 λ

0 0 0 0 1 0

0 0 0 0 0 1



u3α1+2α2(λ) =



1 0 0 0 0 0

0 1 0 0 0 0

0 λ 1 0 0 0

0 0 0 1 0 0

0 0 0 λ 1 0

0 0 0 0 0 1


, u−3α1−2α2(λ) =



1 0 0 0 0 0

0 1 λ 0 0 0

0 0 1 0 0 0

0 0 0 1 λ 0

0 0 0 0 1 0

0 0 0 0 0 1
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Titre : Sous-schémas en groupes paraboliques et variétés homogènes en petites caractéris-
tiques

Mot clés : caractéristique positive, groupes algébriques semi-simples, sous-groupes parabo-

liques, variétés projectives homogènes

Résumé : Cette thèse achève la classifica-
tion des sous-schémas en groupes parabo-
liques des groupes algébriques semi-simples
sur un corps algébriquement clos, en parti-
culier de caractéristique deux et trois. Dans
un premier temps, nous présentons la clas-
sification en supposant que la partie réduite
de ces sous-groupes soit maximale, avant de
passer au cas général. Nous parvenons à une

description quasiment uniforme : à l’excep-
tion d’un groupe de type G2 en caractéristique
deux, chaque sous-schémas en groupes pa-
rabolique est obtenu en multipliant des pa-
raboliques réduits par des noyaux d’isogé-
nies purement inséparables, puis en prenant
l’intersection. En conclusion, nous discutons
quelques implications géométriques de cette
classification.

Title: Parabolic subgroup schemes and homogeneous varieties in small characteristics

Keywords: positive characteristic, semisimple algebraic groups, parabolic subgroups, projec-

tive homogeneous varieties

Abstract: This thesis brings to an end the
classification of parabolic subgroup schemes
of semisimple groups over an algebraically
closed field, focusing on characteristic two and
three. First, we present the classification un-
der the assumption that the reduced part of
these subgroups is maximal; then we pro-
ceed to the general case. We arrive at an al-

most uniform description: with the exception
of a group of type G2 in characteristic two,
any parabolic subgroup scheme is obtained
by multiplying reduced parabolic subgroups by
kernels of purely inseparable isogenies, then
taking the intersection. In conclusion, we dis-
cuss some geometric implications of this clas-
sification.


